Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peili Wang is active.

Publication


Featured researches published by Peili Wang.


Journal of Clinical Investigation | 2005

Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure

Jianchao Xu; Guoyong Li; Peili Wang; Heino Velazquez; Xiaoqiang Yao; Yanyan Li; Yanling Wu; Aldo J. Peixoto; Susan T. Crowley; Gary V. Desir

The kidney not only regulates fluid and electrolyte balance but also functions as an endocrine organ. For instance, it is the major source of circulating erythropoietin and renin. Despite currently available therapies, there is a marked increase in cardiovascular morbidity and mortality among patients suffering from end-stage renal disease. We hypothesized that the current understanding of the endocrine function of the kidney was incomplete and that the organ might secrete additional proteins with important biological roles. Here we report the identification of a novel flavin adenine dinucleotide-dependent amine oxidase (renalase) that is secreted into the blood by the kidney and metabolizes catecholamines in vitro (renalase metabolizes dopamine most efficiently, followed by epinephrine, and then norepinephrine). In humans, renalase gene expression is highest in the kidney but is also detectable in the heart, skeletal muscle, and the small intestine. The plasma concentration of renalase is markedly reduced in patients with end-stage renal disease, as compared with healthy subjects. Renalase infusion in rats caused a decrease in cardiac contractility, heart rate, and blood pressure and prevented a compensatory increase in peripheral vascular tone. These results identify renalase as what we believe to be a novel amine oxidase that is secreted by the kidney, circulates in blood, and modulates cardiac function and systemic blood pressure.


Circulation | 2008

Catecholamines Regulate the Activity, Secretion, and Synthesis of Renalase

Guoyong Li; Jianchao Xu; Peili Wang; Heino Velazquez; Yanyan Li; Yanling Wu; Gary V. Desir

Background— We previously identified renalase, a secreted novel amine oxidase that specifically degrades circulating catecholamines. Parenteral administration of either native or recombinant renalase lowers blood pressure, heart rate, and cardiac contractility by metabolizing circulating catecholamines. Renalase plasma levels are markedly reduced in patients with chronic kidney disease. It is not known whether endogenous renalase contributes to the regulation of catecholamines. Methods and Results— We show here that circulating renalase lacks significant amine oxidase activity under basal conditions (prorenalase) but that a brief surge of epinephrine lasting <2 minutes causes renalase activity to increase from 48±18 to 2246±98 arbitrary units (n=3; P<0.002). Enzyme activation is detectable within 30 seconds and sustained for at least 60 minutes. Analysis of epinephrine-mediated hemodynamic changes in normotensive rats indicates that prorenalase becomes maximally activated when systolic pressure increases by >5 mm Hg. The catecholamine surge also leads to a 2.8-fold increase in plasma renalase concentration. Cultured cells exposed to dopamine upregulate steady-state renalase gene expression by >10-fold. The time course of prorenalase activation is abnormal in rats with chronic kidney disease. Conclusions— These data identify a novel mechanism for the regulation of circulating catecholamines. In the renalase pathway, excess catecholamine facilitates the conversion of prorenalase, an inactive plasma amine oxidase, to renalase, which can degrade catecholamines. Excess catecholamines not only regulate the activation of prorenalase but also promote its secretion and synthesis. Because chronic kidney disease is associated with a number of systemic abnormalities, including activation of the sympathetic nervous system, increased catecholamines levels, cardiac hypertrophy, and hypertension, renalase replacement is an attractive therapeutic modality owing to its role in catecholamine metabolism.


Kidney International | 2011

Renalase deficiency aggravates ischemic myocardial damage

Yanling Wu; Jianchao Xu; Heino Velazquez; Peili Wang; Guoyong Li; Dinggang Liu; Benedita Sampaio-Maia; Janete Quelhas-Santos; Kerry S. Russell; Raymond R. Russell; Richard A. Flavell; Manuel Pestana; Frank J. Giordano; Gary V. Desir

Chronic kidney disease (CKD) leads to an 18-fold increase in cardiovascular complications not fully explained by traditional risk factors. Levels of renalase, a recently discovered oxidase that metabolizes catecholamines, are decreased in CKD. Here we show that renalase deficiency in a mouse knockout model causes increased plasma catecholamine levels and hypertension. Plasma blood urea nitrogen, creatinine, and aldosterone were unaffected. However, knockout mice had normal systolic function and mild ventricular hypertrophy but tolerated cardiac ischemia poorly and developed myocardial necrosis threefold more severe than that found in wild-type mice. Treatment with recombinant renalase completely rescued the cardiac phenotype. To gain insight into the mechanisms mediating this cardioprotective effect, we tested if gene deletion affected nitrate and glutathione metabolism, but found no differences between hearts of knockout and wild-type mice. The ratio of oxidized (NAD) to reduced (NADH) nicotinamide adenine dinucleotide in cardiac tissue, however, was significantly decreased in the hearts of renalase knockout mice, as was plasma NADH oxidase activity. In vitro studies confirmed that renalase metabolizes NADH and catecholamines. Thus, renalase plays an important role in cardiovascular pathology and its replacement may reduce cardiac complications in renalase-deficient states such as CKD.


Journal of the American Heart Association | 2012

Renalase Lowers Ambulatory Blood Pressure by Metabolizing Circulating Adrenaline

Gary V. Desir; LieQi Tang; Peili Wang; Guoyong Li; Benedita Sampaio-Maia; Janete Quelhas-Santos; Manuel Pestana; Heino Velazquez

Background Blood pressure is acutely regulated by the sympathetic nervous system through the action of vasoactive hormones such as epinephrine, norepinephrine, and dopamine. Renalase, a recently described, secreted flavoprotein, acutely decreases systemic pressure when administered in vivo. Single‐nucleotide polymorphisms present in the gene are associated with hypertension, cardiac disease, and diabetes. Although renalases crystal structure was recently solved, its natural substrate(s) remains undefined. Methods and Results Using in vitro enzymatic assays and in vivo administration of recombinant renalase, we show that the protein functions as a flavin adenine dinucleotide– and nicotinamide adenine dinucleotide–dependent oxidase that lowers blood pressure by degrading plasma epinephrine. The enzyme also metabolizes the dopamine precursor l‐3,4‐dihydroxyphenylalanine but has low activity against dopamine and does not metabolize norepinephrine. To test if epinephrine and l‐3,4‐dihydroxyphenylalanine were renalases only substrates, 17 246 unique small molecules were screened. Although the search revealed no additional, naturally occurring compounds, it identified dobutamine, isoproterenol, and α‐methyldopa as substrates of renalase. Mutational analysis was used to test if renalases hypotensive effect correlated with its enzymatic activity. Single–amino acid mutations that decrease its enzymatic activity to varying degrees comparably reduce its hypotensive effect. Conclusions Renalase metabolizes circulating epinephrine and l‐3,4‐dihydroxyphenylalanine, and its capacity to decrease blood pressure is directly correlated to its enzymatic activity. These findings highlight a previously unrecognized mechanism for epinephrine metabolism and blood pressure regulation, expand our understanding of the sympathetic nervous system, and could lead to the development of novel therapeutic modalities for the treatment of hypertension. (J Am Heart Assoc. 2012;1:e002634 doi: 10.1161/JAHA.112.002634.)


Journal of The American Society of Nephrology | 2013

Renalase Protects against Ischemic AKI

Lee Ht; Kim Jy; Kim M; Peili Wang; Tang L; Baroni S; Gary V. Desir

Elevated levels of plasma catecholamines accompany ischemic AKI, possibly contributing the inflammatory response. Renalase, an amine oxidase secreted by the proximal tubule, degrades circulating catecholamines and reduces myocardial necrosis, suggesting that it may protect against renal ischemia reperfusion injury. Here, mice subjected to renal ischemia reperfusion injury had significantly lower levels of renalase in the plasma and kidney compared with sham-operated mice. Consistent with this, plasma NE levels increased significantly after renal ischemia reperfusion injury. Furthermore, renal tubular inflammation, necrosis, and apoptosis were more severe and plasma catecholamine levels were higher in renalase-deficient mice subjected to renal ischemia reperfusion compared with wild-type mice. Administration of recombinant human renalase reduced plasma catecholamine levels and ameliorated ischemic AKI in wild-type mice. Taken together, these data suggest that renalase protects against ischemic AKI by reducing renal tubular necrosis, apoptosis, and inflammation, and that plasma renalase might be a biomarker for AKI. Recombinant renalase therapy may have potential for the prevention and treatment of AKI.


American Journal of Physiology-renal Physiology | 2011

Increased renal dopamine and acute renal adaptation to a high-phosphate diet

Edward J. Weinman; Rajatsubhra Biswas; Deborah Steplock; Peili Wang; Yuen-Sum Lau; Gary V. Desir; Shirish Shenolikar

The current experiments explore the role of dopamine in facilitating the acute increase in renal phosphate excretion in response to a high-phosphate diet. Compared with a low-phosphate (0.1%) diet for 24 h, mice fed a high-phosphate (1.2%) diet had significantly higher rates of phosphate excretion in the urine associated with a two- to threefold increase in the dopamine content of the kidney and in the urinary excretion of dopamine. Animals fed a high-phosphate diet had a significant increase in the abundance and activity of renal DOPA (l-dihydroxyphenylalanine) decarboxylase and significant reductions in renalase, monoamine oxidase A, and monoamine oxidase B. The activity of protein kinase A and protein kinase C, markers of activation of renal dopamine receptors, were significantly higher in animals fed a high-phosphate vs. a low-phosphate diet. Treatment of rats with carbidopa, an inhibitor of DOPA decarboxylase, impaired adaptation to a high-phosphate diet. These experiments indicate that the rapid adaptation to a high-phosphate diet involves alterations in key enzymes involved in dopamine synthesis and degradation, resulting in increased renal dopamine content and activation of the signaling cascade used by dopamine to inhibit the renal tubular reabsorption of phosphate.


Proceedings of the National Academy of Sciences of the United States of America | 2004

The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity

Jianchao Xu; Peili Wang; Yanyan Li; Guoyong Li; Leonard K. Kaczmarek; Yanling Wu; Pandelakis A. Koni; Richard A. Flavell; Gary V. Desir


Human Molecular Genetics | 2003

The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight

Jianchao Xu; Pandelakis A. Koni; Peili Wang; Guoyong Li; Leonard K. Kaczmarek; Yanling Wu; Yanyan Li; Richard A. Flavell; Gary V. Desir


Biochemical and Biophysical Research Communications | 2007

Regulation of insulin secretion and GLUT4 trafficking by the calcium sensor synaptotagmin VII.

Yanyan Li; Peili Wang; Jianchao Xu; Fred S. Gorelick; Hanae Yamazaki; Norma W. Andrews; Gary V. Desir


American Journal of Physiology-cell Physiology | 2006

Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+-dependent mechanism

Yanyan Li; Peili Wang; Jianchao Xu; Gary V. Desir

Collaboration


Dive into the Peili Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge