Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peitan Liu is active.

Publication


Featured researches published by Peitan Liu.


Neurochemical Research | 1998

Augmentation of Nitric Oxide, Superoxide, and Peroxynitrite Production During Cerebral Ischemia and Reperfusion in the Rat

L. J. Forman; Peitan Liu; Robert G. Nagele; K. Yin; P. Y.-K. Wong

The effect of ischemia produced by bilateral occlusion of the common carotid arteries (30 min) followed by 4 hours of reperfusion on total and inducible nitric oxide synthase (NOS) activity and the production of nitric oxide (NO), superoxide and peroxynitrite in the cerebral hemispheres was determined in the rat. Compared to sham-operated controls, cerebral ischemia-reperfusion resulted in a significant increase in total and inducible NOS activity and a significant increase in the production of NO and superoxide in the cerebral hemispheres. The level of NO in the plasma and the peripheral leukocyte count were also significantly increased. Immunohistochemical staining for nitrotyrosine (a marker of peroxynitrite production) showed that ischemia-reperfusion resulted in increased synthesis of cerebral peroxynitrite. Administration of the irreversible NOS inhibitor, Nω-nitro-L-arginine (L-NA), increased superoxide levels in the brain and significantly reduced plasma NO. Total and inducible NOS activity as well as NO and immunoreactive nitrotyrosine, in the cerebral hemispheres were reduced with L-NA administration. The number of leukocytes in the plasma was unaffected by administration of L-NA. These findings suggest that cerebral ischemia-reperfusion causes increased production of reactive oxygen species in the cerebral hemispheres and that the production of peroxynitrite, and not superoxide, may be dependent upon the availability of NO.


American Journal of Physiology-heart and Circulatory Physiology | 1998

NO modulates P-selectin and ICAM-1 mRNA expression and hemodynamic alterations in hepatic I/R

Peitan Liu; Baohuan Xu; Carl E. Hock; Robert G. Nagele; Frank F. Sun; Patrick Y-K Wong

The anti-inflammatory role of nitric oxide (NO) was studied in a model of hepatic ischemia-reperfusion (I/R) in rats. Male Fischer rats were subjected to 30 min of no-flow ischemia of the left and median lobes of the liver, and animals were examined for a 4-h period of reperfusion. The animals were divided into the following groups: control-vehicle; I/R-vehicle; I/R-Nomega-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg iv, 10 min before reperfusion); sham control-L-NAME, and I/R-S-nitroso-N-acetyl-penicillamine (SNAP, 25 micromol/kg iv, 10 min before reperfusion, followed by 20 micromol. kg-1. h-1 in 1.0 ml saline infused for 4 h). Results showed that mean arterial blood pressure was significantly increased in the sham control-L-NAME or I/R-L-NAME groups compared with either the I/R-vehicle or I/R-SNAP groups. However, cardiac index (CI) and stroke volume index (SVI) were markedly decreased, and systemic vascular resistance index (SVRI) was dramatically increased. Interestingly, the CI and SVI in rats treated with SNAP were markedly improved over that of the I/R group. Plasma nitrate and nitrite levels were significantly decreased in the I/R-L-NAME group; however, superoxide generation in the ischemic lobes and plasma alanine aminotransferase activity were higher compared with I/R-SNAP rats. The L-NAME-induced enhancement of hepatic injury in rats with I/R may be due in part to neutrophil infiltration, which was significantly increased compared with animals subjected to I/R or I/R-SNAP. The mechanism of L-NAME-enhanced neutrophil infiltration may be due to the fact that the ratios of P-selectin and intercellular adhesion molecule 1 (ICAM-1) mRNA to glyceraldehyde-3-phosphate dehydrogenase mRNA extracted from the ischemic lobes of I/R-L-NAME rats were significantly increased when compared with the I/R-SNAP group. These results suggest that 1) endogenous NO reduces the SVRI and permits an increased CI and SVI; 2) exogenous NO further improves CI and SVI; and 3) endogenous, but not exogenous, NO decreases P-selectin and ICAM-1 mRNA expression, thereby reducing polymorphonuclear neutrophil-dependent reperfusion tissue injury.The anti-inflammatory role of nitric oxide (NO) was studied in a model of hepatic ischemia-reperfusion (I/R) in rats. Male Fischer rats were subjected to 30 min of no-flow ischemia of the left and median lobes of the liver, and animals were examined for a 4-h period of reperfusion. The animals were divided into the following groups: control-vehicle; I/R-vehicle; I/R- N ω-nitro-l-arginine methyl ester (l-NAME, 10 mg/kg iv, 10 min before reperfusion); sham control-l-NAME, and I/R- S-nitroso- N-acetyl-penicillamine (SNAP, 25 μmol/kg iv, 10 min before reperfusion, followed by 20 μmol ⋅ kg-1 ⋅ h-1in 1.0 ml saline infused for 4 h). Results showed that mean arterial blood pressure was significantly increased in the sham control-l-NAME or I/R-l-NAME groups compared with either the I/R-vehicle or I/R-SNAP groups. However, cardiac index (CI) and stroke volume index (SVI) were markedly decreased, and systemic vascular resistance index (SVRI) was dramatically increased. Interestingly, the CI and SVI in rats treated with SNAP were markedly improved over that of the I/R group. Plasma nitrate and nitrite levels were significantly decreased in the I/R-l-NAME group; however, superoxide generation in the ischemic lobes and plasma alanine aminotransferase activity were higher compared with I/R-SNAP rats. Thel-NAME-induced enhancement of hepatic injury in rats with I/R may be due in part to neutrophil infiltration, which was significantly increased compared with animals subjected to I/R or I/R-SNAP. The mechanism ofl-NAME-enhanced neutrophil infiltration may be due to the fact that the ratios of P-selectin and intercellular adhesion molecule 1 (ICAM-1) mRNA to glyceraldehyde-3-phosphate dehydrogenase mRNA extracted from the ischemic lobes of I/R-l-NAME rats were significantly increased when compared with the I/R-SNAP group. These results suggest that 1) endogenous NO reduces the SVRI and permits an increased CI and SVI; 2) exogenous NO further improves CI and SVI; and 3) endogenous, but not exogenous, NO decreases P-selectin and ICAM-1 mRNA expression, thereby reducing polymorphonuclear neutrophil-dependent reperfusion tissue injury.


Shock | 2000

Role of endogenous nitric oxide in TNF-α and IL-1β generation in hepatic ischemia-reperfusion

Peitan Liu; Baohuan Xu; Eric G. Spokas; Pi-Shiang Lai; Patrick Y-K Wong

In the present study, we examined the role of nitric oxide (NO) in early-response cytokine production by using a rat model of hepatic ischemia-reperfusion (HI/R). The left and median lobes of the liver were subjected to 30 min of ischemia, followed by 4 h of reperfusion. Group I and II rats were sham-operated controls that received saline (vehicle) or N(W)-nitro-L-arginine methylester (L-NAME) (10 mg/kg, iv); group III and IV rats were subjected to HI/R and received vehicle or L-NAME (10 mg/kg, iv, 10 min before reperfusion), respectively. Administration of L-NAME to rats subjected to I/R resulted in a fourfold decrease in plasma NO levels, accompanied by a marked increase of plasma alanine aminotransferase (ALT) activity relative to group III. These changes in group IV were associated with elevation of superoxide generation in ischemic liver lobes by 2.1-fold and circulating leukocyte number by 1.42-fold, compared with group III. Normalized for expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) messenger ribonucleic acid (mRNA), expression of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) mRNA in ischemic liver of group IV was augmented by 207% and 175% compared with Group III. The expression of (iNOS) mRNA was also increased (223%) relative to group III. Moreover, in group IV, plasma TNF-alpha levels at 4 h of reperfusion and IL-1beta levels at 90 min and 4 h of reperfusion were significantly increased compared with group III. No statistically significant changes were observed between groups I and II in plasma ALT activity, plasma NO levels, circulating leukocyte counts, superoxide generation in the ischemic lobes of liver, and plasma TNF-a and IL-1beta concentrations. The observed enhancement of I/R injury by L-NAME is consistent with the hypothesis that endogenous NO down-regulates TNF-alpha and IL1beta generation, thereby decreasing HI/R injury.


Shock | 2006

Pifithrin-alpha attenuates p53-mediated apoptosis and improves cardiac function in response to myocardial ischemia/reperfusion in aged rats.

Peitan Liu; Baohuan Xu; Thomas A. Cavalieri; Carl E. Hock

ABSTRACT Ischemic cardiovascular disease is a common age-related disease. The p53-dependent cardiac myocyte apoptosis induced by myocardial ischemia/reperfusion (MI/R) is an important feature in the progression of ischemic heart disease. In the present studies, we hypothesized that inhibition of p53-dependent myocyte apoptosis may improve cardiac dysfunction in aged rats after MI/R. A dose (2.2 mg/kg, i.p.) of pifithrin-&agr; (PFT), a p53 inhibitor, or saline was administered to 20-month-old male F344 rats, which were subjected to 30 min of myocardial ischemia by ligating the left main coronary artery, followed by release of the ligature and 4 h of reperfusion. Results of our experiments indicate that MI/R induced a significant decrease in cardiac output index (CI) and mean arterial blood pressure (MABP). Administration of PFT to aged rats 40 min before ischemia significantly improved CI and MABP during 3 to 4 h of reperfusion. The improvement of cardiac function was associated with a marked reduction in DNA fragmentation in the area at risk of the heart when compared with aged MI/R rats pretreated with saline. Interestingly, treatment with PFT 10 min after ischemia or 10 min after reperfusion had a similar protective effect on CI and MABP, but this effect did not reach statistical significance when compared with aged MI/R rats pretreated with saline. Treatment with PFT, however, did not influence plasma creatine kinase activity and the number of circulating leukocytes and infiltrated leukocytes in the area at risk of the heart. Moreover, results of Western blot show that pretreatment with PFT significantly attenuated the ratio of Bax to Bcl-2 in the area-at-risk tissue of the heart compared with that of rats pretreated with saline. Our results suggest that pretreatment with PFT significantly improved cardiac function. The mechanism of protective effect of PFT may involve the inhibition of p53 transcriptional function, thereby attenuating the p53/Bax-mediated myocyte apoptosis during the reperfusion period.


Shock | 2001

Inhibition of nitric oxide synthesis by L-NAME exacerbates acute lung injury induced by hepatic ischemia-reperfusion

Peitan Liu; Baohuan Xu; Carl E. Hock

Hepatic Kupffer cells and pulmonary alveolar macrophages together constitute a macrophage-axis involved in the regulation of regional and systemic inflammatory responses. Systemic inflammatory response syndrome induced by overproduced pro-inflammatory mediators is the major cause of adult respiratory distress syndrome. In the present study, we examined the anti-inflammatory role of nitric oxide (NO) in a rat model of acute lung injury induced by hepatic ischemia-reperfusion (HI/R). The left and median lobes of the liver were subjected to 30 min of ischemia by clamping the relevant branches of hepatic artery and portal vein, followed by a 4-h reperfusion achieved by removal of the vascular clamp. Four groups of animals were studied: sham control + saline; sham control + N(omega)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.v., 10 min before reperfusion); HI/R + saline; HI/R + L-NAME. Results show that (1) administration of L-NAME to rats subjected to HI/R decreased plasma NO levels; however, the attenuation of NO increased plasma alanine aminotransferase (ALT) activity and superoxide generation in the ischemic lobes of liver, compared to HI/R alone. (2) Inhibition of NO synthesis with L-NAME in rats subjected to HI/R also enhanced systemic inflammatory response as assessed by the increase in the number of circulating leukocytes and levels of plasma tumor necrosis factor-alpha (TNFalpha) and interleukin 1-beta (IL-1beta). (3) The overwhelming systemic inflammatory response induced by administration of L-NAME in rats subjected to HI/R also augmented pulmonary vascular permeability and superoxide generation in the lung tissue. (4) Pulmonary alveolar macrophages isolated from rats subjected to HI/R + L-NAME produced higher levels of TNFalpha and IL-1beta in the supernatant of culture medium than that of rats subjected to HI/R alone. (5) There were no differences between the groups of sham + saline and sham + L-NAME in terms of plasma NO levels and ALT activity, circulating leukocytes, superoxide generation in the liver and lung, lavage protein levels, and TNFalpha and IL-1beta levels in plasma and bronchoalveolar lavage fluid. Our results suggest that inhibition of NO synthesis by L-NAME in rats subjected to HI/R not only augments ischemic liver injury, but also enhances the systemic inflammatory response and exacerbates remote lung injury. The increase in TNFalpha and IL-1beta production by alveolar macrophages may, in part, account for L-NAME-induced enhancement of acute lung injury.


Shock | 2002

L-NAME enhances microcirculatory congestion and cardiomyocyte apoptosis during myocardial ischemia-reperfusion in rats.

Peitan Liu; Baohuan Xu; Lloyd J. Forman; Rocco V. Carsia; Carl E. Hock

Besides necrosis, apoptosis is the other major mode of cardiomyocyte loss in ischemic cardiovascular disease. In the present study, we examined the hypothesis that nitric oxide (NO) protects myocardial function by improving myocardial microcirculation and attenuating cardiomyocyte apoptosis in a rat model of myocardial ischemia/reperfusion (MI/R). The left main coronary artery of anesthetized male rats was ligated for 40 min, followed by 4 h reperfusion. Four groups of animals were studied: sham operated control + saline; sham operated control + NW-nitro-L-arginine methyl ester (L-NAME); MI/R + saline; MI/R + L-NAME (10 mg/kg, iv, 10 min prior to reperfusion). Results show that MI/R caused a decrease in mean arterial blood pressure (MABP), cardiac index (CI), and stroke volume index (SVI). Inhibition of NO synthesis by L-NAME attenuated plasma NO levels, but increased MABP and SVR in sham control rats and rats subjected to MI/R, and further depressed left ventricular function in rats subjected to MI/R as indicated by decreased CI and SVI. Furthermore, administration of L-NAME to rats subjected to MI/R enhanced cardiomyocyte apoptosis as indicated by a significant increase in DNA fragmentation compared to rats with MI/R alone. Histological study revealed that L-NAME caused arterial constriction and congestion of red blood cells in arteries and capillaries in the peri-ischemic areas of the hearts in rats subjected to MI/R and, interestingly, also in the sham control rats. Data suggest that the mechanism of increased reperfusion injury may be attributable to a “no-reflow” phenomenon induced by L-NAME, resulting in increased cardiomyocyte apoptosis secondary to ischemia and enhanced cytochrome-c release from mitochondria. In addition, cardiac injury may be increased due to the augmented oxygen consumption of cardiomyocytes caused by the increased SVR and afterload. These results suggest that endogenous NO may act to improve myocardial microvascular perfusion, reduce SVR, and limit cardiomyocyte apoptosis, thereby, attenuating myocardial dysfunction induced by MI/R.


Shock | 2008

INHIBITION OF p53 BY PIFITHRIN-α REDUCES MYOCYTE APOPTOSIS AND LEUKOCYTE TRANSMIGRATION IN AGED RAT HEARTS FOLLOWING 24 HOURS OF REPERFUSION

Peitan Liu; Baohuan Xu; Thomas A. Cavalieri; Carl E. Hock

ABSTRACT Ischemic heart disease is a common age-related disease. Apoptotic cell death and inflammation are the major contributors to I/R injury. The mechanisms that trigger myocyte apoptosis and inflammation during myocardial I/R (MI/R) remain to be elucidated. Published data from our laboratory demonstrated that pretreatment of MI/R rats with pifithrin-&agr; (PFT), a specific p53 inhibitor, reduced myocyte apoptosis and improved cardiac function compared with MI/R rats pretreated with saline at 4 h of reperfusion. In the present study, we investigated the effects of PFT on the occurrence of myocyte apoptosis and leukocyte transmigration in the later period of reperfusion. Aged (20-month-old) male F344 ratswere subjected to 30 min of myocardial ischemia via ligature of the LCA, followed by 24 h of reperfusion. Pifithrin-&agr; (2.2 mg/kg, intraperitoneally) or saline was administered to rats before ischemia. The results indicate that pretreatment of MI/R rats with PFT significantly decreased the percentage of infarct area to ischemic area (33 ± 8 vs. 54 ± 9, P < 0.05) and improved cardiac output (79 ± 11 vs. 38 ± 9 mL/min per 100 g body weight, P < 0.05) when compared with rats pretreated with saline at 24 h of reperfusion. The protective effects of PFT may involve the p53/Bax-mediated apoptosis because treatment of MI/R rats with PFT attenuated the ratio of Bax to Bcl2 (0.97 ± 0.1 vs. 2.1 ± 0.2, P < 0.05) and reduced myocyte apoptosis. Interestingly, inhibition of p53 transcriptional function by PFT alleviated leukocyte infiltration into the ischemic area of the heart (339 ± 37 vs. 498 ± 75 cells/10 high-power fields, P < 0.05). These data suggest that inhibition of p53 transcriptional function by PFT attenuates myocyte apoptosis and alleviates leukocyte transmigration at 24 h of reperfusion. The mechanisms by which p53 modulates leukocyte transmigration require further investigation.


American Journal of Physiology-heart and Circulatory Physiology | 1997

Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats

Peitan Liu; Carl E. Hock; Robert G. Nagele; Patrick Y-K Wong


Journal of Pharmacology and Experimental Therapeutics | 1998

Inhibition of Nitric Oxide Synthase Attenuates Peroxynitrite Generation, but Augments Neutrophil Accumulation in Hepatic Ischemia-Reperfusion in Rats

Peitan Liu; Kingsley Yin; Robert G. Nagele; Patrick Y-K Wong


American Journal of Physiology-cell Physiology | 2000

Peroxynitrite attenuates hepatic ischemia-reperfusion injury

Peitan Liu; Baohuan Xu; John Quilley; Patrick Y-K Wong

Collaboration


Dive into the Peitan Liu's collaboration.

Top Co-Authors

Avatar

Baohuan Xu

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Carl E. Hock

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Patrick Y-K Wong

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Cavalieri

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric G. Spokas

New York Medical College

View shared research outputs
Top Co-Authors

Avatar

Frank F. Sun

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Gang Yue

University of Medicine and Dentistry of New Jersey

View shared research outputs
Researchain Logo
Decentralizing Knowledge