Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peiwen Li is active.

Publication


Featured researches published by Peiwen Li.


Journal of Solar Energy Engineering-transactions of The Asme | 2011

Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material

Jon Van Lew; Peiwen Li; Cho Lik Chan; Wafaa Karaki; Jake Stephens

Thermal storage has been considered as an important measure to extend the operation of a concentrated solar power plant by providing more electricity and meeting the peak demand of power in the time period from dusk to late night everyday, or even providing power on cloudy days. Discussed in this paper is thermal energy storage in a thermocline tank having a solid filler material. To provide more knowledge for designing and operating of such a thermocline storage system, this paper firstly presents the application of method of characteristics for numerically predicting the heat charging and discharging process in a packed bed thermocline storage tank. Nondimensional analysis of governing equations and numerical solution schemes using the method of characteristics were presented. The numerical method proved to be very efficient, accurate; required minimal computations; and proved versatile in simulating various operational conditions for which analytical methods cannot always provide solutions. Available analytical solutions under simple boundary and initial conditions were used to validate the numerical modeling and computation. A validation of the modeling by comparing the simulation results to experimental test data from literature also confirmed the effectiveness of the model and the related numerical solution method. Finally, design procedures using the numerical modeling tool were discussed and other issues related to operation of a thermocline storage system were also studied.


Journal of The Electrochemical Society | 2004

Numerical Modeling and Performance Study of a Tubular SOFC

Peiwen Li; Kenjiro Suzuki

A quasi-2D model was proposed and made available for numerical studies on the performance of a single tubular solid oxide fuel cell (SOFC) under practical operating conditions. The model takes account of the air and fuel flow velocity fields, ohmic and thermodynamic heat generation, convective heat-transfer, mass transfer of participating chemical species including the electrochemical processes, and the electric potential and electric current in the electrodes and electrolyte. Numerical computation was carried out to test the proposed model for a single unit cell having a specific geometry being operated at a few different thermal and composition conditions for the inlet fuel and air flows. Obtained numerical results show that the quasi-two-dimensional approximation adopted in the model to mitigate the computational cost effectively can work reasonably well. At low electric current density, the cell terminal voltage was overpredicted. In order to improve the model on this point, the simple treatment adopted for the activation and concentration polarization in the model must be replaced by a more sophisticated approach in future studies. Discussions were further given conceming the obtained results for the overall cell performance and the detailed features of the velocity, thermal, and mass-transfer fields in the cell in addition to the local electrochemical characteristics. It is suggested that the air flow convective heat-transfer is important as a cooling means and that overpotential due to concentration polarization is more serious for the cathode side than for the anode side. All the presented results including the electricity conversion efficiency were observed to agree reasonably well with the popularly accepted cell performance.


International Journal of Heat and Fluid Flow | 2002

Experimental study on drag-reducing channel flow with surfactant additives-Spatial structure of turbulence investigated by PIV system

Yasuo Kawaguchi; Takehiko Segawa; Ziping Feng; Peiwen Li

Abstract The turbulent frictional drag of water can be reduced dramatically by adding small amounts of drag-reducing materials, such as polymers or surfactants. As a percentage drag reduction of 80% can easily be achieved, this technique is thought to be the most practical method of reducing turbulent frictional drag. In this work, a double pulse particle image velocimetry (PIV) system was used to clarify the spatial velocity distribution of surfactant solution flow in a two-dimensional channel. A type of cationic surfactant cetyltrimethyl ammonium chloride (C16H33N(CH3)3Cl) mixed with the same weight of counter-ion material NaSal (HOC6H4COONa) was used as a drag-reducing additive to water at a mass concentration of 40 ppm. Instantaneous velocity distribution taken by PIV was examined to clarify the effect of surfactant. It was found that the instantaneous velocity distribution taken in water flow exhibits penetration from the low-speed fluid region into the high-speed region, which is one of the important events of turbulence energy production and turbulent mixing. Although this structure is commonly observed in water flow, it was not found in drag-reducing flow under the same Reynolds number. The strong vorticity fluctuation near the wall also disappeared and the integral length scale in streamwise direction of turbulent fluctuation had a smaller value in surfactant solution flow.


Journal of Power Sources | 2003

The performance of PEM fuel cells fed with oxygen through the free-convection mode

Peiwen Li; Tao Zhang; Qing-Ming Wang; Laura A. Schaefer; Minking K. Chyu

The feasibility and restrictions of feeding oxygen to a PEM fuel cell through free-convection mass transfer were studied through theoretical analysis and experimental testing. It was understood through the theoretical analysis that the free-convection mass-transfer coefficient strongly depends on the difference in mass fraction or concentration of oxygen at the cathode surface and in the quiescent air. Thus, the mass-transfer rate has a strong dependence on the oxygen concentration at the cathode surface, which can be viewed in terms of the relationship of the fuel cell current density and the fuel cell voltage. Through this analysis, the maximum applicable current density was derived, beyond which there will be an abrupt drop in the output voltage, which results in excessively low power in the fuel cell. Experimental tests were conducted for one PEM fuel cell stack and two single PEM fuel cell units. An excessive drop in output voltage was observed when the free-convection mass-transfer mode was utilized. It was also found that the orientation of the cathode surface affects the performance of the fuel cell, which is mainly due to the fact that the free-convection mass-transfer coefficient depends on the orientation of the involved mass-transfer surface, which is analogous to free-convection heat transfer.


Journal of Heat Transfer-transactions of The Asme | 2001

Heat transfer enhancement to the drag-reducing flow of surfactant solution in two-dimensional channel with mesh-screen inserts at the inlet

Peiwen Li; Yasuo Kawaguchi; Hisashi Daisaka; Akira Yabe; Koichi Hishida; Masanobu Maeda

The heat transfer enhancement of drag-reducing flow of high Reynolds number in a two-dimensional channel by utilizing the characteristic of fluid was studied. As the networks of rod-like micelles in surfactant solution are responsible for suppressing the turbulence in drag-reducing flow, destruction of the structure of networks was considered to eliminate the drag reduction and prevent heat transfer deterioration. By inserting wire mesh in the channel against the flow, the drag-reducing function of the micellar structure in surfactant aqueous solution was successfully switched off. With the Reynolds number close to the first critical Reynolds number, the heat transfer coefficient in the region downstream of the mesh can be improved significantly, reaching the same level as that of water. The region with turbulent heat transfer downstream of the mesh becomes smaller as the concentration of surfactant in the solution increases. Three types of mesh of different wire diameter and opening space were evaluated for their effect in promoting heat transfer and the corresponding pressure loss due to blockage of the mesh. The turbulent intensities were measured downstream from the mesh by using a Laser Doppler Velocimetry (LDV) system


RSC Advances | 2012

Selective adsorption for removing sulfur: a potential ultra-deep desulfurization approach of jet fuels

Yuesong Shen; Peiwen Li; Xinhai Xu; Hong Liu

Jet fuels are strategic fuels widely used in airplanes. Through appropriate reforming and shifting processing, jet fuels can be converted into syngas, which is a suitable fuel to solid oxide fuel cells for many auxiliary and backup power units. Integrated micro fuel processors in combination with solid oxide fuel cell (SOFC) stacks using jet fuels have been viewed as attractive portable power sources. Because the sulfur in jet fuels easily causes catalyst poisoning for fuel processing reactions and the electrochemical reactions in fuel cells, ultra-deep sulfur removal in jet fuels and many other hydrocarbon fuels has become a very important and active research subject worldwide in the last 15 years. Amongst the state-of-the-art technologies, selective adsorption for removing sulfur (SARS) is emerged to be very attractive. SARS has been regarded as the most promising approach because it obtains ultra-deep desulfurization efficiency at ambient temperature and atmospheric pressure without hydrogen consumption. In this paper, we survey the current status and prospect of the SARS technology for jet fuels, and will discuss some important issues remaining for the SARS technology in the future. The final goal of this survey is to find/innovate a promising method for jet fuel desulfurization, which is most suitable for supplying fuels to solid oxide fuel cell auxiliary and backup power units.


Journal of Heat Transfer-transactions of The Asme | 2004

A numerical model coupling the heat and gas species' transport processes in a tubular SOFC

Peiwen Li; Laura A. Schaefer; Minking K. Chyu

A numerical model is presented in this work that computes the interdependent fields of flow, temperature, and mass fractions in a single tubular solid oxide fuel cell (SOFC). Fuel gas from a pre-reformer is considered to contain H 2 , CO, CO 2 , H 2 O (vapor), and CH 4 , so reforming and shift reactions in the cell are incorporated. The model uses mixture gas properties of the fuel and oxidant that are functions of the numerically obtained local temperature, pressure, and species concentrations, which are both interdependent and related to the chemical and electrochemical reactions. A discretized network circuit of a tubular SOFC was adopted to account for the Ohmic losses and Joule heating from the current passing around the circumference of the cell to the interconnect. In the iterative computation, local electrochemical parameters were simultaneously calculated based on the local parameters of pressure, temperature, and concentration of the species. Upon convergence of the computation, both local details and the overall performance of the fuel cell are obtained. These numerical results are important in order to better understand the operation of SOFCs.


IEEE Nanotechnology Magazine | 2008

Energy storage is the core of renewable technologies

Peiwen Li

The article is about nanotechnology energy storage, focusing on solar energy harvest and utilization strategies. A review of the general features of the variety of energy storage, their development, technical and economical feasibility are discussed.


ASME Turbo Expo 2006: Power for Land, Sea, and Air | 2006

Heat Transfer in an Airfoil Trailing Edge Configuration With Shaped Pedestals Mounted Internal Cooling Channel and Pressure Side Cutback

S. P. Chen; Peiwen Li; Minking K. Chyu; Frank J. Cunha; William Abdel-Messeh

Described in this paper is an experimental study of heat transfer over a trailing edge configuration preceded with an internal cooling channel of pedestal array. The pedestal array consists of both circular pedestals and oblong shaped blocks. Downstream to the pedestal array, the trailing edge features pressure side cutback partitioned by the oblong shaped blocks. The local heat transfer coefficient over the entire wetted surface in the internal cooling chamber has been determined by using a “hybrid” measurement technique based on transient liquid crystal imaging. The hybrid technique employs the transient conduction model in a semi-infinite solid for resolving the heat transfer coefficient on the endwall surface uncovered by the pedestals. The heat transfer coefficient over a pedestal can be resolved by the lumped capacitance method with an assumption of low Biot number. The overall heat transfer for both the pedestals and endwalls combined shows a significant enhancement compared to the case with thermally developed smooth channel. Near the downstream most section of the suction side, the land, due to pressure side cutback, is exposed to the stream mixed with hot gas and discharged coolant. Both the adiabatic effectiveness and heat transfer coefficient on the land section are characterized by using the transient liquid crystal technique.Copyright


Journal of Solar Energy Engineering-transactions of The Asme | 2012

Experimental investigation of thermal storage processes in a thermocline tank

M. M. Valmiki; Wafaa Karaki; Peiwen Li; Jon Van Lew; Cho Lik Chan; Jake Stephens

This paper presents an experimental study of the energy charge and discharge processes in a packed bed thermocline thermal storage tank for application in concentrated solar power plants. A mathematical analysis was provided for better understanding and planning of the experimental tests. The mathematical analysis indicated that the energy storage effectiveness is related to fluid and solid material properties, tank dimensions, packing schemes of the solid filler material, and the durations of the charge and discharge times. Dimensional analysis of the governing equations was applied to consolidate many parameters into a few dimensionless parameters, allowing scaling from a laboratory system to an actual industrial application. Experiences on the system design, packing of solid filler material, system operation, and data analysis in a laboratory-scale system have been obtained in this work. These data are used to validate a recently published numerical solution method. The study will benefit the application of thermocline thermal storage systems in the large scale concentrated solar thermal power plants in industry.

Collaboration


Dive into the Peiwen Li's collaboration.

Top Co-Authors

Avatar

Ben Xu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Liu

University of Arizona

View shared research outputs
Top Co-Authors

Avatar

Xinhai Xu

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Wang

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge