Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peiyan Yuan is active.

Publication


Featured researches published by Peiyan Yuan.


Nanoscale | 2013

TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation

Na Zhou; Lakshminarayana Polavarapu; Nengyue Gao; Yanlin Pan; Peiyan Yuan; Qing Wang; Qing-Hua Xu

A facile method was used to prepare uniform Au NR/TiO2 and Au/Ag NR/TiO2 core-shell composite nanoparticles. Au/Ag NR/TiO2 nanoparticles were found to display significantly enhanced visible light photo-catalytic activity compared to Au NR/TiO2 and the commercially available TiO2 nanoparticles. The enhancement mechanism was ascribed to injection of hot electrons of photo-excited Au/Ag NRs to TiO2, which was confirmed by 633 nm laser induced reduction of silver ions on the surface of Au/Ag NR/TiO2 composite nanoparticles.


Langmuir | 2012

Plasmon-Enhanced Photocatalytic Properties of Cu2O Nanowire–Au Nanoparticle Assemblies

Yanlin Pan; Suzi Deng; Lakshminarayana Polavarapu; Nengyue Gao; Peiyan Yuan; Chorng Haur Sow; Qing-Hua Xu

Cu(2)O-Au nanocomposites (NCs) with tunable coverage of Au were prepared by a facile method of mixing gold nanoparticles (Au NPs) with copper(I) oxide nanowires (Cu(2)O NWs) in various ratios. These Cu(2)O-Au NCs display tunable optical properties, and their photocatalytic properties were dependent on the coverage density of Au NPs. The photocatalytic activity of Cu(2)O-Au NCs was examined by photodegradation of methylene blue. The presence of Au NPs enhanced the photodegradation efficiency of Cu(2)O NCs. The photocatalytic efficiency of Cu(2)O-Au NCs initially increased with the increasing coverage density of Au NPs and then decreased as the surface of Cu(2)O became densely covered by Au NPs. The enhanced photocatalytic efficiency was ascribed to enhanced light absorption (by the surface plasmon resonance) and the electron sink effect of the Au NPs.


Nanoscale | 2012

Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy

Tingting Zhao; Xiaoqin Shen; Lin Li; Zhenping Guan; Nengyue Gao; Peiyan Yuan; Shao Q. Yao; Qing-Hua Xu; Guo Qin Xu

Gold nanorods with three different aspect ratios were prepared and their dual capabilities for two-photon imaging and two-photon photodynamic therapy have been demonstrated. These gold nanorods exhibit large two-photon absorption action cross-sections, about two orders of magnitude larger than small organic molecules, which makes them suitable for two-photon imaging. They can also effectively generate singlet oxygen under two-photon excitation, significantly higher than traditional photosensitizers such as Rose Bengal and Indocyanine Green. Such high singlet oxygen generation capability under two-photon excitation was ascribed to their large two-photon absorption cross-sections. Polyvinylpyrrolidone (PVP) coated gold nanorods displayed excellent biocompatibility and high cellular uptake efficiency. The two-photon photodynamic therapy effect and two-photon fluorescence imaging properties of PVP coated gold nanorods have been successfully demonstrated on HeLa cells in vitro using fluorescence microscopy and indirect XTT assay method. These gold nanorods thus hold great promise for imaging guided two-photon photodynamic therapy for the treatment of various malignant tumors.


ACS Applied Materials & Interfaces | 2014

Gold Nanorod Enhanced Two-Photon Excitation Fluorescence of Photosensitizers for Two-Photon Imaging and Photodynamic Therapy

Tingting Zhao; Kuai Yu; Lin Li; Taishi Zhang; Zhenping Guan; Nengyue Gao; Peiyan Yuan; Shuang Li; Shao Qin Yao; Qing-Hua Xu; Guo Qin Xu

Plasmon enhancement of optical properties is both fundamentally important and appealing for many biological and photonic applications. Although metal-enhanced two-photon excitation fluorescence has been demonstrated in the solid substrates, there is no report on metal enhanced overall two-photon excitation fluorescence in the colloid system. Here we systematically investigated gold nanorod enhanced one- and two-photon excitation fluorescence of a porphyrin molecule, T790. The separation distance between the metal core and T790 was varied by adjusting the silica shell thickness from 13 to 42 nm. One- and two-photon excitation fluorescence intensities of T790 were found to strongly depend on the thickness of silica shell that separates gold nanorod and T790. The optimum one- and two-photon excitation fluorescence enhancement was found to occur at shell thicknesses of 34 and 20 nm, with enhancement factors of 2.1 and 11.8, respectively. Fluorescence lifetime of T790 steadily decreased as the shell thickness decreased. The observed two-photon excitation fluorescence enhancement is ascribed to a combination effect of local electric field amplification and competition between increased radiative and non-radiative decay rates. Core-shell nanoparticles that displayed enhanced two-photon excitation fluorescence were also found to exhibit significantly improved singlet oxygen generation capability under two-photon excitation. The applications of these nanoparticles as effective agents for two-photon cell imaging and nano-photosensitizers for two-photon photodynamic therapy with improved efficiency have also been demonstrated in HepG2 cancer cells. The combined advantages of enhanced two-photon excitation fluorescence and two-photon induced singlet oxygen generation make these core-shell nanoparticles as attractive agents for two-photon imaging guided two-photon photodynamic therapy.


Journal of the American Chemical Society | 2013

Huge Enhancement in Two-Photon Photoluminescence of Au Nanoparticle Clusters Revealed by Single-Particle Spectroscopy

Zhenping Guan; Nengyue Gao; Xiao-Fang Jiang; Peiyan Yuan; Fei Han; Qing-Hua Xu

Aggregated metal nanoparticles have been known to display significantly enhanced two-photon photoluminescence (TPPL) compared to nonaggregated nanoparticles, which could be utilized to develop platforms for two-photon sensing and imaging applications. Here we have conducted single-particle spectroscopic studies on gold (Au) nanoparticle clusters of different sizes to understand the enhancement mechanisms and explore the limit of maximum achievable enhancement. Our studies show that the TPPL intensity of Au nanoparticle clusters significantly increases from monomer to trimer. The averaged intensity of the Au nanosphere dimers and linear trimers is ~7.8 × 10(3) and ~7.0 × 10(4) times that of Au nanosphere monomers, respectively. A highest enhancement of 1.2 × 10(5) folds was obtained for the linear trimer. The TPPL spectra of these single Au nanosphere clusters closely resemble their corresponding scattering spectra, suggesting strong correlation between their TPPL with plasmon resonance. The scattering spectra of dimers and linear trimers displayed cos(2) dependence on the detection polarization, while their TPPL displayed cos(4) dependence on the excitation polarization, which are very similar to Au nanorods. These results suggest that two-photon excitation of dimer and linear trimer is strongly coupled to their longitudinal plasmon resonance modes. These studies help to provide insight on fundamental understanding of the enhancement mechanisms as well as development of biomedical and photonic applications.


Langmuir | 2012

Enhanced Optical Properties of Graphene Oxide–Au Nanocrystal Composites

Yih Hong Lee; Lakshminaraya Polavarapu; Nengyue Gao; Peiyan Yuan; Qing-Hua Xu

A simple strategy based on electrostatic interactions was utilized to assemble Au nanocrystals of various morphologies onto graphene oxide (GO). This method allows deposition of metal nanocrystals of different shapes onto GO. The linear and nonlinear optical properties of GO-Au nanocrystal composites have been examined. The extinction spectra of Au nanocrystals became broadened and red-shifted from the visible to the near IR upon formation of GO-Au nanocrystal composites. A more than 4-fold increase in two-photon excitation emission intensity was observed from the GO-Au nanocrystal composites compared to pure Au nanocrystals. The SERS signals of the composites were found to be strongly dependent on the morphology of Au nanocrystals, with SERS enhancement factors ranging from 9 to 20.


Journal of Physical Chemistry Letters | 2013

Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy

Xiao-Fang Jiang; Yanlin Pan; Cuifeng Jiang; Tingting Zhao; Peiyan Yuan; T. Venkatesan; Qing-Hua Xu

Gold nanorods (Au NRs) and coupled gold nanospheres (Au NSs) are known to display strong two-photon photoluminescence (TPPL). Here two-pulse emission modulation (TPEM) and pump-probe measurements were performed on Au NRs and coupled Au NSs to understand their excitation mechanisms. The TPEM cross contributions of Au NRs and coupled Au NSs showed much slower decay compared with a two-photon absorption organic dye. Their decay time constants (4.0 ps for Au NRs and 3.1 ps for coupled Au NSs) match well with the lifetimes of intermediate states measured from pump-probe experiments. These results support the fact that strong TPPL in Au NRs and coupled Au NSs arises from two sequential one-photon absorption steps involving real intermediate states instead of coherent two-photon absorption. These results give direct evidence that previously observed aggregation-enhanced TPPL arises from enhanced two-photon excitation efficiency, which was facilitated by two sequential plasmon-coupling-enhanced one-photon absorption steps via real intermediate states.


Angewandte Chemie | 2016

Cell‐Penetrating Poly(disulfide) Assisted Intracellular Delivery of Mesoporous Silica Nanoparticles for Inhibition of miR‐21 Function and Detection of Subsequent Therapeutic Effects

Changmin Yu; Linghui Qian; Jingyan Ge; Jiaqi Fu; Peiyan Yuan; Samantha C. L. Yao; Shao Q. Yao

The design of drug delivery systems capable of minimal endolysosomal trapping, controlled drug release, and real-time monitoring of drug effect is highly desirable for personalized medicine. Herein, by using mesoporous silica nanoparticles (MSNs) coated with cell-penetrating poly(disulfide)s and a fluorogenic apoptosis-detecting peptide (DEVD-AAN), we have developed a platform that could be uptaken rapidly by mammalian cells via endocytosis-independent pathways. Subsequent loading of these MSNs with small molecule inhibitors and antisense oligonucleotides resulted in intracellular release of these drugs, leading to combination inhibition of endogenous miR-21 activities which was immediately detectable by the MSN surface-coated peptide using two-photon fluorescence microscopy.


ACS Applied Materials & Interfaces | 2013

Two-Photon Induced Photoluminescence and Singlet Oxygen Generation from Aggregated Gold Nanoparticles

Cuifeng Jiang; Tingting Zhao; Peiyan Yuan; Nengyue Gao; Yanlin Pan; Zhenping Guan; Na Zhou; Qing-Hua Xu

Metal nanoparticles have potential applications as bioimaging and photosensitizing agents. Aggregation effects are generally believed to be adverse to their biomedical applications. Here we have studied the aggregation effects on two-photon induced photoluminescence and singlet oxygen generation of Au nanospheres and Au nanorods of two different aspect ratios. Aggregated Au nanospheres and short Au nanorods were found to display enhanced two-photon induced photoluminescence and singlet oxygen generation capabilities compared to the unaggregated ones. The two-photon photoluminescence of Au nanospheres and short Au nanorods were enhanced by up to 15.0- and 2.0-fold upon aggregation, and the corresponding two-photon induced singlet oxygen generation capabilities were enhanced by 8.3 and 1.8-fold, respectively. The two-photon induced photoluminescence and singlet oxygen generation of the aggregated long Au nanorods were found to be lower than the unaggregated ones. These results support that the change in their two-photon induced photoluminescence and singlet oxygen generation originate from aggregation modulated two-photon excitation efficiency. This finding is expected to foster more biomedical applications of metal nanoparticles as Au nanoparticles normally exist in an aggregated form in the biological environments. Considering their excellent biocompatibility, high inertness, ready conjugation, and easy preparation, Au nanoparticles are expected to find more applications in two-photon imaging and two-photon photodynamic therapy.


Langmuir | 2014

Conjugated-Polymer-Based Red-Emitting Nanoparticles for Two- Photon Excitation Cell Imaging with High Contrast

Shuang Li; Xiaoqin Shen; Lin Li; Peiyan Yuan; Zhenping Guan; Shao Q. Yao; Qing-Hua Xu

Two-photon fluorescence microscopy is a widely used noninvasive bioimaging technique because of unique advantages such as a large penetration depth and 3D mapping capability. Ideal two-photon fluorophores require large two-photon absorption cross sections and red emission with high quantum yields. Here we report red-emitting-dye-doped conjugated polymer nanoparticles that display high two-photon excitation brightness. In these nanoparticles, conjugated polymer (PFV) was chosen as a two-photon light-harvesting material, and red-emitting dyes (MgPc and Nile red) were chosen as the energy acceptors and red-emitting materials. Two-photon excitation fluorescence of MgPc and Nile red was enhanced by up to ∼53 and ∼240 times, respectively. We have successfully demonstrated the application of these conjugated polymer-based nanoparticles in two-photon excitation cancer cell imaging with an excellent contrast ratio. This concept could become a general approach to the preparation of two-photon excitation red-emitting materials for deep-tissue live-cell imaging with high contrast.

Collaboration


Dive into the Peiyan Yuan's collaboration.

Top Co-Authors

Avatar

Qing-Hua Xu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Nengyue Gao

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Zhenping Guan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Shao Q. Yao

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Tingting Zhao

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Lin Li

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yanlin Pan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Changmin Yu

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cuifeng Jiang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Na Zhou

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge