Pekka Mäntsälä
University of Turku
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pekka Mäntsälä.
Critical Reviews in Biochemistry and Molecular Biology | 1989
Mauno Vihinen; Pekka Mäntsälä
Starch-degrading, amylolytic enzymes are widely distributed among microbes. Several activities are required to hydrolyze starch to its glucose units. These enzymes include alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, pullulan-degrading enzymes, exoacting enzymes yielding alpha-type endproducts, and cyclodextrin glycosyltransferase. Properties of these enzymes vary and are somewhat linked to the environmental circumstances of the producing organisms. Features of the enzymes, their action patterns, physicochemical properties, occurrence, genetics, and results obtained from cloning of the genes are described. Among all the amylolytic enzymes, the genetics of alpha-amylase in Bacillus subtilis are best known. Alpha-Amylase production in B. subtilis is regulated by several genetic elements, many of which have synergistic effects. Genes encoding enzymes from all the amylolytic enzyme groups dealt with here have been cloned, and the sequences have been found to contain some highly conserved regions thought to be essential for their action and/or structure. Glucoamylase appears usually in several forms, which seem to be the results of a variety of mechanisms, including heterogeneous glycosylation, limited proteolysis, multiple modes of mRNA splicing, and the presence of several structural genes.
Applied and Environmental Microbiology | 2002
Mikko Metsä-Ketelä; Laura Halo; Eveliina Munukka; Juha Hakala; Pekka Mäntsälä; Kristiina Ylihonko
ABSTRACT A 613-bp fragment of an essential ketosynthase gene from the biosynthetic pathway of aromatic polyketide antibiotics was sequenced from 99 actinomycetes isolated from soil. Phylogenetic analysis showed that the isolates clustered into clades that correspond to the various classes of aromatic polyketides. Additionally, sequencing of a 120-bp fragment from the γ-variable region of 16S ribosomal DNA (rDNA) and subsequent comparative sequence analysis revealed incongruity between the ketosynthase and 16S rDNA phylogenetic trees, which strongly suggests that there has been horizontal transfer of aromatic polyketide biosynthesis genes. The results show that the ketosynthase tree could be used for DNA fingerprinting of secondary metabolites and for screening interesting aromatic polyketide biosynthesis genes. Furthermore, the movement of the ketosynthase genes suggests that traditional marker molecules like 16S rDNA give misleading information about the biosynthesis potential of aromatic polyketides, and thus only molecules that are directly involved in the biosynthesis of secondary metabolites can be used to gain information about the biodiversity of antibiotic production in different actinomycetes.
Molecular Genetics and Genomics | 1996
Kristiina Ylihonko; J. Tuikkanen; S. Jussila; L. Cong; Pekka Mäntsälä
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.
The EMBO Journal | 2004
Azmiri Sultana; Anna Jansson; Ji-Shu Wang; Jarmo Niemi; Pekka Mäntsälä; Gunter Schneider
SnoaL belongs to a family of small polyketide cyclases, which catalyse ring closure steps in the biosynthesis of polyketide antibiotics produced in Streptomyces. Several of these antibiotics are among the most used anti‐cancer drugs currently in use. The crystal structure of SnoaL, involved in nogalamycin biosynthesis, with a bound product, has been determined to 1.35 Å resolution. The fold of the subunit can be described as a distorted α+β barrel, and the ligand is bound in the hydrophobic interior of the barrel. The 3D structure and site‐directed mutagenesis experiments reveal that the mechanism of the intramolecular aldol condensation catalysed by SnoaL is different from that of the classical aldolases, which employ covalent Schiff base formation or a metal ion cofactor. The invariant residue Asp121 acts as an acid/base catalyst during the reaction. Stabilisation of the enol(ate) intermediate is mainly achieved by the delocalisation of the electron pair over the extended π system of the substrate. These polyketide cyclases thus form of family of enzymes with a unique catalytic strategy for aldol condensation.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Igor Alexeev; Azmiri Sultana; Pekka Mäntsälä; Jarmo Niemi; Gunter Schneider
Aclacinomycin (Acl) oxidoreductase (AknOx) catalyzes the last two steps in the biosynthesis of polyketide antibiotics of the Acl group, the oxidation of the terminal sugar moiety rhodinose to l-aculose. We present the crystal structure of AknOx with bound FAD and the product AclY, refined to 1.65-Å resolution. The overall fold of AknOx identifies the enzyme as a member of the p-cresol methylhydroxylase superfamily. The cofactor is bicovalently attached to His-70 and Cys-130 as 8α-Nδ1-histidyl, 6-S-cysteinyl FAD. The polyketide ligand is bound in a deep cleft in the substrate-binding domain, with the tetracyclic ring system close to the enzyme surface and the three-sugar chain extending into the protein interior. The terminal sugar residue packs against the isoalloxazine ring of FAD and positions the carbon atoms that are oxidized close to the N5 atom of FAD. The structure and site-directed mutagenesis data presented here are consistent with a mechanism where the two different reactions of AknOx are catalyzed in the same active site but by different active site residues. Tyr-450 is responsible for proton removal from the C-4 hydroxyl group in the first reaction, the oxidation of rhodinose to cinerulose A. Tyr-378 acts as a catalytic base involved in proton abstraction from C3 of cinerulose A in the second reaction, for formation l-aculose. Replacement of this residue, however, does not impair the conversion of rhodinose to cinerulose A.
Molecular Genetics and Genomics | 1992
Jorma Lampinen; Leeni Koivisto; Matti Wahlsten; Pekka Mäntsälä; Matti Karp
SummaryA group of vectors for luciferase expression in Bacillus subtilis was constructed. So far, only bacterial luciferases have been expressed in Bacillus, but in this study we wanted also to express genes encoding eukaryotic luciferases to perform direct comparisons of the light levels produced by the two different systems in B. subtilis. The vectors constructed can replicate both in Escherichia coli and B. subtilis, and the luciferase expression is strictly regulated due to the dual plasmid system used. Nearly a 100-fold increase in light production compared to previous results was achieved when genes encoding bacterial luciferase were inserted into the constructs and transformed into B. subtilis. An additional tenfold increase in light production was obtained when luciferase genes from the North American firefly (Photinus pyralis) or a click beetle (Pyrophorus plagiophtalamus) were introduced in a similar fashion into B. subtilis. Measurement of the light emission was performed without disruption of bacterial cells in a real-time manner, which is a common feature when working with all of these constructions. Structures of the shuttle vector constructs and results from light emission measurements are presented.
Microbiology | 1994
Jarmo Niemi; Kristiina Ylihonko; Juha Hakala; Raimo Pärssinen; Anja Kopio; Pekka Mäntsälä
A DNA segment cloned from Streptomyces purpurascens ATCC 25489 close to a region that hybridized to a probe containing part of the actinorhodin polyketide synthase caused S. galilaeus ATCC 31615 to produce new anthracyclines. When transformed with certain sub-clones of this segment, the host produced glycosides of epsilon-rhodomycinone, beta-rhodomycinone, 10-demethoxycarbonylaklavinone and 11-deoxy-beta-rhodomycinone in addition to those of aklavinone, the natural anthracyclines of S. galilaeus. The first two compounds are S. purpurascens products and the other two are novel compounds that conceptually are structural hybrids between S. galilaeus and S. purpurascens products. Three glycosides of one of the novel aglycones, 11-deoxy-beta-rhodomycinone, were purified and found to possess cytotoxic activity against L1210 mouse leukaemia cells. Separate regions of the cloned S. purpurascens DNA are responsible for modification of the S. galilaeus host product at the 10- and 11-positions.
Antimicrobial Agents and Chemotherapy | 2003
Mikko Metsä-Ketelä; Kaisa Palmu; Tero Kunnari; Kristiina Ylihonko; Pekka Mäntsälä
ABSTRACT The biosynthesis pathways of two anthracyclines, nogalamycin and aclacinomycin, were directed toward angucyclines by using an angucycline-specific cyclase, pgaF, isolated from a silent antibiotic biosynthesis gene cluster. Addition of pgaF to a gene cassette that harbored the early biosynthesis genes of nogalamycin resulted in the production of two known angucyclinone metabolites, rabelomycin and its precursor, UWM6. Substrate flexibility of pgaF was demonstrated by replacement of the nogalamycin minimal polyketide synthase genes in the gene cassette with the equivalent aclacinomycin genes together with aknE2 and aknF, which specify the unusual propionate starter unit in aclacinomycin biosynthesis. This modification led to the production of a novel angucyclinone, MM2002, in which the expected ethyl side chain was incorporated into the fourth ring.
Microbiology | 1996
Kristiina Ylihonko; Juha Hakala; Tero Kunnari; Pekka Mäntsälä
A cluster of anthracycline biosynthetic genes isolated from Streptomyces nogalater was expressed in Streptomyces lividans and in Streptomyces galilaeus. A 12 kb DNA fragment cloned from this cluster in pIJ486 caused the production of a novel compound when introduced into S. lividans. The compound is derived from nogalonic acid methyl ester, an early intermediate in nogalamycin biosynthesis. Complementation with the cloned 12 kb fragment of S. galilaeus mutants blocked in aclacinomycin biosynthesis caused the production of hybrid anthracyclines. Cloning of the nogalamycin gene cluster should make possible a detailed study of the biosynthesis of this interesting antibiotic, as well as the production of novel anthracyclines of potential value as cytostatic drugs.
Gene | 1987
Ilari Suominen; Matti Karp; Matti Lähde; Anja Kopio; Tuomo Glumoff; Peter Meyer; Pekka Mäntsälä
Overexpression of Bacillus stearothermophilus gene coding for thermostable alpha-amylase in Escherichia coli was shown to cause outer-membrane damage leading to extracellular location of periplasmic proteins. Prolonged high expression of the alpha-amylase gene under lacZpo control eventually also lysed cells. Surprisingly, expression controlled by the pL promoter of phage lambda allowed specific release of periplasmic proteins into the growth medium without total cell lysis. Accumulation of alpha-amylase in the growth medium continued for at least 24 h under lambda pL control, whereas beta-lactamase activity ceased to increase beyond the exponential growth phase. The extent of outer membrane damage caused by alpha-amylase expression was monitored by following growth kinetics in the presence of lysozyme and by electron microscopy of the cells. Supplementing growth medium with Mg2+ restored the normal growth kinetics. It is suggested that periplasmic protein release caused by alpha-amylase overexpression is a stress response of the cell. A role for induced autolytic activity of the cell as a final effector of protein release is also proposed.