Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pelin Yilmaz is active.

Publication


Featured researches published by Pelin Yilmaz.


Nucleic Acids Research | 2012

The SILVA ribosomal RNA gene database project: improved data processing and web-based tools

Christian Quast; Elmar Pruesse; Pelin Yilmaz; Jan Gerken; Timmy Schweer; Pablo Yarza; Jörg Peplies; Frank Oliver Glöckner

SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.


Nature Reviews Microbiology | 2014

Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences

Pablo Yarza; Pelin Yilmaz; Elmar Pruesse; Frank Oliver Glöckner; Wolfgang Ludwig; Karl-Heinz Schleifer; William B. Whitman; Jean Euzeby; Rudolf Amann; Ramon Rosselló-Móra

Publicly available sequence databases of the small subunit ribosomal RNA gene, also known as 16S rRNA in bacteria and archaea, are growing rapidly, and the number of entries currently exceeds 4 million. However, a unified classification and nomenclature framework for all bacteria and archaea does not yet exist. In this Analysis article, we propose rational taxonomic boundaries for high taxa of bacteria and archaea on the basis of 16S rRNA gene sequence identities and suggest a rationale for the circumscription of uncultured taxa that is compatible with the taxonomy of cultured bacteria and archaea. Our analyses show that only nearly complete 16S rRNA sequences give accurate measures of taxonomic diversity. In addition, our analyses suggest that most of the 16S rRNA sequences of the high taxa will be discovered in environmental surveys by the end of the current decade.


Nucleic Acids Research | 2014

The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks

Pelin Yilmaz; Laura Wegener Parfrey; Pablo Yarza; Jan Gerken; Elmar Pruesse; Christian Quast; Timmy Schweer; Jörg Peplies; Wolfgang Ludwig; Frank Oliver Glöckner

SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive resource for up-to-date quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. SILVA provides a manually curated taxonomy for all three domains of life, based on representative phylogenetic trees for the small- and large-subunit rRNA genes. This article describes the improvements the SILVA taxonomy has undergone in the last 3 years. Specifically we are focusing on the curation process, the various resources used for curation and the comparison of the SILVA taxonomy with Greengenes and RDP-II taxonomies. Our comparisons not only revealed a reasonable overlap between the taxa names, but also points to significant differences in both names and numbers of taxa between the three resources.


Frontiers in Microbiology | 2016

Expanding the World of Marine Bacterial and Archaeal Clades

Pelin Yilmaz; Pablo Yarza; Josephine Z. Rapp; Frank Oliver Glöckner

Determining which microbial taxa are out there, where they live, and what they are doing is a driving approach in marine microbial ecology. The importance of these questions is underlined by concerted, large-scale, and global ocean sampling initiatives, for example the International Census of Marine Microbes, Ocean Sampling Day, or Tara Oceans. Given decades of effort, we know that the large majority of marine Bacteria and Archaea belong to about a dozen phyla. In addition to the classically culturable Bacteria and Archaea, at least 50 “clades,” at different taxonomic depths, exist. These account for the majority of marine microbial diversity, but there is still an underexplored and less abundant portion remaining. We refer to these hitherto unrecognized clades as unknown, as their boundaries, names, and classifications are not available. In this work, we were able to characterize up to 92 of these unknown clades found within the bacterial and archaeal phylogenetic diversity currently reported for marine water column environments. We mined the SILVA 16S rRNA gene datasets for sequences originating from the marine water column. Instead of the usual subjective taxa delineation and nomenclature methods, we applied the candidate taxonomic unit (CTU) circumscription system, along with a standardized nomenclature to the sequences in newly constructed phylogenetic trees. With this new phylogenetic and taxonomic framework, we performed an analysis of ICoMM rRNA gene amplicon datasets to gain insights into the global distribution of the new marine clades, their ecology, biogeography, and interaction with oceanographic variables. Most of the new clades we identified were interspersed by known taxa with cultivated members, whose genome sequences are available. This result encouraged us to perform metabolic predictions for the novel marine clades using the PICRUSt approach. Our work also provides an update on the taxonomy of several phyla and widely known marine clades as our CTU approach breaks down these randomly lumped clades into smaller objectively calculated subgroups. Finally, all taxa were classified and named following standards compatible with the Bacteriological Code rules, enhancing their digitization, and comparability with future microbial ecological and taxonomy studies.


The ISME Journal | 2014

MIxS-BE: a MIxS extension defining a minimum information standard for sequence data from the built environment.

Elizabeth M. Glass; Yekaterina Dribinsky; Pelin Yilmaz; Hal Levin; Robert Van Pelt; Doug Wendel; Andreas Wilke; Jonathan A. Eisen; Susan M. Huse; Anna Shipanova; Mitchell L. Sogin; Jason E. Stajich; Rob Knight; Folker Meyer; Lynn M. Schriml

MIxS-BE: a MIxS extension defining a minimum information standard for sequence data from the built environment


Nature Biotechnology | 2018

Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

Robert M. Bowers; Nikos C. Kyrpides; Ramunas Stepanauskas; Miranda Harmon-Smith; Devin Fr Doud; T. B.K. Reddy; Frederik Schulz; Jessica Jarett; Adam R. Rivers; Emiley A. Eloe-Fadrosh; Susannah G. Tringe; Natalia Ivanova; Alex Copeland; Alicia Clum; Eric D. Becraft; Rex R. Malmstrom; Bruce W. Birren; Mircea Podar; Peer Bork; George M. Weinstock; George M Garrity; Jeremy A. Dodsworth; Shibu Yooseph; Granger Sutton; Frank Oliver Gloeckner; Jack A. Gilbert; William C. Nelson; Steven J. Hallam; Sean P. Jungbluth; Thijs J. G. Ettema

We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.


Nucleic Acids Research | 2010

Megx.net: integrated database resource for marine ecological genomics

Renzo Kottmann; Ivalyo Kostadinov; Melissa B. Duhaime; Pier Luigi Buttigieg; Pelin Yilmaz; Wolfgang Hankeln; Jost Waldmann; Frank Oliver Glöckner

Megx.net is a database and portal that provides integrated access to georeferenced marker genes, environment data and marine genome and metagenome projects for microbial ecological genomics. All data are stored in the Microbial Ecological Genomics DataBase (MegDB), which is subdivided to hold both sequence and habitat data and global environmental data layers. The extended system provides access to several hundreds of genomes and metagenomes from prokaryotes and phages, as well as over a million small and large subunit ribosomal RNA sequences. With the refined Genes Mapserver, all data can be interactively visualized on a world map and statistics describing environmental parameters can be calculated. Sequence entries have been curated to comply with the proposed minimal standards for genomes and metagenomes (MIGS/MIMS) of the Genomic Standards Consortium. Access to data is facilitated by Web Services. The updated megx.net portal offers microbial ecologists greatly enhanced database content, and new features and tools for data analysis, all of which are freely accessible from our webpage http://www.megx.net.


The ISME Journal | 2011

The genomic standards consortium: bringing standards to life for microbial ecology

Pelin Yilmaz; Jack A. Gilbert; Rob Knight; Linda A. Amaral-Zettler; Ilene Karsch-Mizrachi; Guy Cochrane; Yasukazu Nakamura; Susanna-Assunta Sansone; Frank Oliver Glöckner; Dawn Field

Adoption of easy-to-follow standards will vastly improve our ability to interpret data from genomes, metagenomes and marker studies


Nature microbiology | 2016

The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle.

Clara Martínez-Pérez; Wiebke Mohr; Carolin R Löscher; Julien Dekaezemacker; Sten Littmann; Pelin Yilmaz; Nadine Lehnen; Bernhard M. Fuchs; Gaute Lavik; Ruth A. Schmitz; Julie LaRoche; Marcel M. M. Kuypers

Microbial dinitrogen (N2) fixation, the nitrogenase enzyme-catalysed reduction of N2 gas into biologically available ammonia, is the main source of new nitrogen (N) in the ocean. For more than 50 years, oceanic N2 fixation has mainly been attributed to the activity of the colonial cyanobacterium Trichodesmium1,2. Other smaller N2-fixing microorganisms (diazotrophs)—in particular the unicellular cyanobacteria group A (UCYN-A)—are, however, abundant enough to potentially contribute significantly to N2 fixation in the surface waters of the oceans3–6. Despite their abundance, the contribution of UCYN-A to oceanic N2 fixation has so far not been directly quantified. Here, we show that in one of the main areas of oceanic N2 fixation, the tropical North Atlantic7, the symbiotic cyanobacterium UCYN-A contributed to N2 fixation similarly to Trichodesmium. Two types of UCYN-A, UCYN-A1 and -A2, were observed to live in symbioses with specific eukaryotic algae. Single-cell analyses showed that both algae–UCYN-A symbioses actively fixed N2, contributing ∼20% to N2 fixation in the tropical North Atlantic, revealing their significance in this region. These symbioses had growth rates five to ten times higher than Trichodesmium, implying a rapid transfer of UCYN-A-fixed N into the food web that might significantly raise their actual contribution to N2 fixation. Our analysis of global 16S rRNA gene databases showed that UCYN-A occurs in surface waters from the Arctic to the Antarctic Circle and thus probably contributes to N2 fixation in a much larger oceanic area than previously thought. Based on their high rates of N2 fixation and cosmopolitan distribution, we hypothesize that UCYN-A plays a major, but currently overlooked role in the oceanic N cycle.


PLOS ONE | 2015

Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data

Katrin Panzer; Pelin Yilmaz; Michael Weiß; Lothar Reich; Michael Richter; Jutta Wiese; Rolf Schmaljohann; Antje Labes; Johannes F. Imhoff; Frank Oliver Glöckner; Marlis Reich

Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.

Collaboration


Dive into the Pelin Yilmaz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Cochrane

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge