Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Penelope J. Brockie is active.

Publication


Featured researches published by Penelope J. Brockie.


Neuron | 1999

Neuronal Control of Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor

Yi Zheng; Penelope J. Brockie; Jerry E. Mellem; David M. Madsen; Andres V. Maricq

How simple neuronal circuits control behavior is not well understood at the molecular or genetic level. In Caenorhabditis elegans, foraging behavior consists of long, forward movements interrupted by brief reversals. To determine how this pattern is generated and regulated, we have developed novel perturbation techniques that allow us to depolarize selected neurons in vivo using the dominant glutamate receptor mutation identified in the Lurcher mouse. Transgenic worms that expressed a mutated C. elegans glutamate receptor in interneurons that control locomotion displayed a remarkable and unexpected change in their behavior-they rapidly alternated between forward and backward coordinated movement. Our findings suggest that the gating of movement reversals is controlled in a partially distributed fashion by a small subset of interneurons and that this gating is modified by sensory input.


The Journal of Neuroscience | 2004

Dopamine and Glutamate Control Area-Restricted Search Behavior in Caenorhabditis elegans

Thomas T. Hills; Penelope J. Brockie; Andres V. Maricq

Area-restricted search (ARS) is a foraging strategy used by many animals to locate resources. The behavior is characterized by a time-dependent reduction in turning frequency after the last resource encounter. This maximizes the time spent in areas in which resources are abundant and extends the search to a larger area when resources become scarce. We demonstrate that dopaminergic and glutamatergic signaling contribute to the neural circuit controlling ARS in the nematode Caenorhabditis elegans. Ablation of dopaminergic neurons eliminated ARS behavior, as did application of the dopamine receptor antagonist raclopride. Furthermore, ARS was affected by mutations in the glutamate receptor subunits GLR-1 and GLR-2 and the EAT-4 glutamate vesicular transporter. Interestingly, preincubation on dopamine restored the behavior in worms with defective dopaminergic signaling, but not in glr-1, glr-2, or eat-4 mutants. This suggests that dopaminergic and glutamatergic signaling function in the same pathway to regulate turn frequency. Both GLR-1 and GLR-2 are expressed in the locomotory control circuit that modulates the direction of locomotion in response to sensory stimuli and the duration of forward movement during foraging. We propose a mechanism for ARS in C. elegans in which dopamine, released in response to food, modulates glutamatergic signaling in the locomotory control circuit, thus resulting in an increased turn frequency.


Neuron | 2001

The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion

Penelope J. Brockie; Jerry E. Mellem; Thomas T. Hills; David M. Madsen; Andres V. Maricq

The N-methyl-D-aspartate (NMDA) subtype of glutamate receptor is important for synaptic plasticity and nervous system development and function. We have used genetic and electrophysiological methods to demonstrate that NMR-1, a Caenorhabditis elegans NMDA-type ionotropic glutamate receptor subunit, plays a role in the control of movement and foraging behavior. nmr-1 mutants show a lower probability of switching from forward to backward movement and a reduced ability to navigate a complex environment. Electrical recordings from the interneuron AVA show that NMDA-dependent currents are selectively disrupted in nmr-1 mutants. We also show that a slowly desensitizing variant of a non-NMDA receptor can rescue the nmr-1 mutant phenotype. We propose that NMDA receptors in C. elegans provide long-lived currents that modulate the frequency of movement reversals during foraging behavior.


Neuron | 2002

Decoding of Polymodal Sensory Stimuli by Postsynaptic Glutamate Receptors in C. elegans

Jerry E. Mellem; Penelope J. Brockie; Yi Zheng; David M. Madsen; Andres V. Maricq

The C. elegans polymodal ASH sensory neurons detect mechanical, osmotic, and chemical stimuli and release glutamate to signal avoidance responses. To investigate the mechanisms of this polymodal signaling, we have characterized the role of postsynaptic glutamate receptors in mediating the response to these distinct stimuli. By studying the behavioral and electrophysiological properties of worms defective for non-NMDA (GLR-1 and GLR-2) and NMDA (NMR-1) receptor subunits, we show that while the osmotic avoidance response requires both NMDA and non-NMDA receptors, the response to mechanical stimuli only requires non-NMDA receptors. Furthermore, analysis of the EGL-3 proprotein convertase provides additional evidence that polymodal signaling in C. elegans occurs via the differential activation of postsynaptic glutamate receptor subtypes.


Nature | 2004

SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function in C. elegans

Yi Zheng; Jerry E. Mellem; Penelope J. Brockie; David M. Madsen; Andres V. Maricq

Ionotropic glutamate receptors (iGluRs) mediate most excitatory synaptic signalling between neurons. Binding of the neurotransmitter glutamate causes a conformational change in these receptors that gates open a transmembrane pore through which ions can pass. The gating of iGluRs is crucially dependent on a conserved amino acid that was first identified in the ‘lurcher’ ataxic mouse. Through a screen for modifiers of iGluR function in a transgenic strain of Caenorhabditis elegans expressing a GLR-1 subunit containing the lurcher mutation, we identify suppressor of lurcher (sol-1). This gene encodes a transmembrane protein that is predicted to contain four extracellular β-barrel-forming domains known as CUB domains. SOL-1 and GLR-1 are colocalized at the cell surface and can be co-immunoprecipitated. By recording from neurons expressing GLR-1, we show that SOL-1 is an accessory protein that is selectively required for glutamate-gated currents. We propose that SOL-1 participates in the gating of non-NMDA (N-methyl-d-aspartate) iGluRs, thereby providing a previously unknown mechanism of regulation for this important class of neurotransmitter receptor.


Cell | 2012

Wnt Signaling Regulates Acetylcholine Receptor Translocation and Synaptic Plasticity in the Adult Nervous System

Michael Reinhold Jensen; Frédéric J. Hoerndli; Penelope J. Brockie; Rui Wang; Erica Johnson; Dane Maxfield; Michael M. Francis; David M. Madsen; Andres V. Maricq

The adult nervous system is plastic, allowing us to learn, remember, and forget. Experience-dependent plasticity occurs at synapses--the specialized points of contact between neurons where signaling occurs. However, the mechanisms that regulate the strength of synaptic signaling are not well understood. Here, we define a Wnt-signaling pathway that modifies synaptic strength in the adult nervous system by regulating the translocation of one class of acetylcholine receptors (AChRs) to synapses. In Caenorhabditis elegans, we show that mutations in CWN-2 (Wnt ligand), LIN-17 (Frizzled), CAM-1 (Ror receptor tyrosine kinase), or the downstream effector DSH-1 (disheveled) result in similar subsynaptic accumulations of ACR-16/α7 AChRs, a consequent reduction in synaptic current, and predictable behavioral defects. Photoconversion experiments revealed defective translocation of ACR-16/α7 to synapses in Wnt-signaling mutants. Using optogenetic nerve stimulation, we demonstrate activity-dependent synaptic plasticity and its dependence on ACR-16/α7 translocation mediated by Wnt signaling via LIN-17/CAM-1 heteromeric receptors.


Nature Neuroscience | 2008

Action potentials contribute to neuronal signaling in C. elegans

Jerry E. Mellem; Penelope J. Brockie; David M. Madsen; Andres V. Maricq

Small, high-impedance neurons with short processes, similar to those found in the soil nematode Caenorhabditis elegans, are predicted to transmit electrical signals by passive propagation. However, we have found that certain neurons in C. elegans fire regenerative action potentials. These neurons resembled Schmitt triggers, as their potential state appears to be bistable. Transitions between up and down states could be triggered by application of the neurotransmitter glutamate or brief current pulses.


Current Biology | 2009

A Novel Conus Snail Polypeptide Causes Excitotoxicity by Blocking Desensitization of AMPA Receptors

Craig S. Walker; Stori Jensen; Michael Ellison; Jose A. Matta; Won Yong Lee; Julita S. Imperial; Nick Duclos; Penelope J. Brockie; David M. Madsen; John T. R. Isaac; Baldomero M. Olivera; Andres V. Maricq

BACKGROUND Ionotropic glutamate receptors (iGluRs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the central nervous system. Based on both molecular and pharmacological criteria, iGluRs have been divided into two major classes, the non-NMDA class, which includes both AMPA and kainate subtypes of receptors, and the NMDA class. One evolutionarily conserved feature of iGluRs is their desensitization in the continued presence of glutamate. Thus, when in a desensitized state, iGluRs can be bound to glutamate, yet the channel remains closed. However, the relevance of desensitization to nervous system function has remained enigmatic. RESULTS Here, we report the identification and characterization of a novel polypeptide (con-ikot-ikot) from the venom of a predatory marine snail Conus striatus that specifically disrupts the desensitization of AMPA receptors (AMPARs). The stoichiometry of con-ikot-ikot appears reminiscent of the proposed subunit organization of AMPARs, i.e., a dimer of dimers, suggesting that it acts as a molecular four-legged clamp that holds the AMPAR channel open. Application of con-ikot-ikot to hippocampal slices caused a large and rapid increase in resting AMPAR-mediated current leading to neuronal death. CONCLUSIONS Our findings provide insight into the mechanisms that regulate receptor desensitization and demonstrate that in the arms race between prey and predators, evolution has selected for a toxin that blocks AMPAR desensitization, thus revealing the fundamental importance of desensitization for regulating neural function.


Neuron | 2008

Evolutionary Conserved Role for TARPs in the Gating of Glutamate Receptors and Tuning of Synaptic Function

Rui Wang; Craig S. Walker; Penelope J. Brockie; Michael M. Francis; Jerry E. Mellem; David M. Madsen; Andres V. Maricq

Neurotransmission in the brain is critically dependent on excitatory synaptic signaling mediated by AMPA-class ionotropic glutamate receptors (AMPARs). AMPARs are known to be associated with Transmembrane AMPA receptor Regulatory Proteins (TARPs). In vertebrates, at least four TARPs appear to have redundant roles as obligate chaperones for AMPARs, thus greatly complicating analysis of TARP participation in synaptic function. We have overcome this limitation by identifying and mutating the essential set of TARPs in C. elegans (STG-1 and STG-2). In TARP mutants, AMPAR-mediated currents and worm behaviors are selectively disrupted despite apparently normal surface expression and clustering of the receptors. Reconstitution experiments indicate that both STG-1 and STG-2 can functionally substitute for vertebrate TARPs to modify receptor function. Thus, we show that TARPs are obligate auxiliary subunits for AMPARs with a primary, evolutionarily conserved functional role in the modification of current kinetics.


Current Biology | 2008

Memory in Caenorhabditis elegans is Mediated By NMDA-Type Ionotropic Glutamate Receptors

Takashi Kano; Penelope J. Brockie; Toshihiro Sassa; Hiroyuki Fujimoto; Yasushi Kawahara; Yuichi Iino; Jerry E. Mellem; David M. Madsen; Ryuji Hosono; Andres V. Maricq

Learning and memory are essential processes of both vertebrate and invertebrate nervous systems that allow animals to survive and reproduce. The neurotransmitter glutamate signals via ionotropic glutamate receptors (iGluRs) that have been linked to learning and memory formation; however, the signaling pathways that contribute to these behaviors are still not well understood. We therefore undertook a genetic and electrophysiological analysis of learning and memory in the nematode Caenorhabditis elegans. Here, we show that two genes, nmr-1 and nmr-2, are predicted to encode the subunits of an NMDA-type (NMDAR) iGluR that is necessary for memory retention in C. elegans. We cloned nmr-2, generated a deletion mutation in the gene, and showed that like nmr-1, nmr-2 is required for in vivo NMDA-gated currents. Using an associative-learning paradigm that pairs starvation with the attractant NaCl, we also showed that the memory of a learned avoidance response is dependent on NMR-1 and NMR-2 and that expression of NMDARs in a single pair of interneurons is sufficient for normal memory. Our results provide new insights into the molecular and cellular mechanisms underlying the memory of a learned event.

Collaboration


Dive into the Penelope J. Brockie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael M. Francis

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge