Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pengbo Zhou is active.

Publication


Featured researches published by Pengbo Zhou.


Molecular Cell | 2000

The hPLIC Proteins May Provide a Link between the Ubiquitination Machinery and the Proteasome

Maurits F. Kleijnen; Alan H. Shih; Pengbo Zhou; Sushant Kumar; Raymond E. Soccio; Nancy Kedersha; Grace Gill; Peter M. Howley

Although there is a binding site on the proteasome for the polyubiquitin chains attached to degradation substrates by the ubiquitination machinery, it is currently unclear whether in vivo the activities of the ubiquitination machinery and the proteasome are coupled. Here we show that two human homologs of the yeast ubiquitin-like Dsk2 protein, hPLIC-1 and hPLIC-2, physically associate with both proteasomes and ubiquitin ligases in large complexes. Overexpression of hPLIC proteins interferes with the in vivo degradation of two unrelated ubiquitin-dependent proteasome substrates, p53 and IkappaBalpha, but not a ubiquitin-independent substrate. Our findings raise the possibility that the hPLIC proteins, and possibly related ubiquitin-like family members, may functionally link the ubiquitination machinery to the proteasome to affect in vivo protein degradation.


Journal of Biological Chemistry | 1998

p35, the Neuronal-specific Activator of Cyclin-dependent Kinase 5 (Cdk5) Is Degraded by the Ubiquitin-Proteasome Pathway

Gentry N. Patrick; Pengbo Zhou; Young T. Kwon; Peter M. Howley; Li-Huei Tsai

Cyclin-dependent kinase 5 (Cdk5) was originally isolated by its close homology to the human CDC2gene, which is a key regulator of cell cycle progression. However, unlike other Cdks, the activity of Cdk5 is required in post-mitotic neurons. The neuronal-specific p35 protein, which shares no homology to cyclins, was identified by virtue of its association and activation of Cdk5. Gene targeting studies in mice have shown that the p35/Cdk5 kinase is required for the proper neuronal migration and development of the mammalian cortex. We have investigated the regulation of the p35/Cdk5 kinase. Here we show that p35, the activator of Cdk5, is a short-lived protein with a half-life (t 1/2) of 20 to 30 min. Specific proteasome inhibitors such as lactacystin greatly stabilize p35 in vivo. Ubiquitination of p35 can be readily demonstrated in vitro and in vivo. Inhibition of Cdk5 activity by a specific Cdk inhibitor, roscovitine, or by overexpression of a dominant negative mutant of Cdk5 increases the stability of p35 by 2- to 3-fold. Furthermore, phosphorylation mutants of p35 also stabilize p35 2- to 3-fold. Together, these observations demonstrate that the p35/Cdk5 kinase can be subject to rapid turnover in vivo and suggest that phosphorylation of p35 upon Cdk5 kinase activation plays a autoregulatory role in p35 degradation mediated by ubiquitin-mediated proteolysis.


Molecular Cell | 1998

Ubiquitination and Degradation of the Substrate Recognition Subunits of SCF Ubiquitin–Protein Ligases

Pengbo Zhou; Peter M. Howley

The S. cerevisiae SCFCdc4p ubiquitin-protein ligase complex promotes cell cycle transitions through degradation of cell cycle regulators. To investigate SCFCdc4p regulation in vivo, we examined the stability of individual SCFCdc4p components. Whereas Cdc53p and Skp1p were stable, Cdc4p, the F box-containing component responsible for substrate recognition, was short lived and subject to SCF-mediated ubiquitination. Grr1p, another F box component of SCF complexes, was also ubiquitinated. A stable truncated Cdc4pF-beta-gal hybrid protein capable of binding Skp1p and entering into an SCF complex interfered with proteolysis of SCF targets and inhibited cell proliferation. The finding that the F box-containing SCF components are unstable suggests a mechanism of regulating SCF function through ubiquitination and proteolysis of F box components.


Cell | 2010

Merlin/NF2 Suppresses Tumorigenesis by Inhibiting the E3 Ubiquitin Ligase CRL4DCAF1 in the Nucleus

Wei Li; Liru You; Jonathan Cooper; Gaia Schiavon; Angela Pepe-Caprio; Lu Zhou; Ryohei Ishii; Marco Giovannini; C. Oliver Hanemann; Stephen B. Long; Hediye Erdjument-Bromage; Pengbo Zhou; Paul Tempst; Filippo G. Giancotti

Current models imply that the FERM domain protein Merlin, encoded by the tumor suppressor NF2, inhibits mitogenic signaling at or near the plasma membrane. Here, we show that the closed, growth-inhibitory form of Merlin accumulates in the nucleus, binds to the E3 ubiquitin ligase CRL4(DCAF1), and suppresses its activity. Depletion of DCAF1 blocks the promitogenic effect of inactivation of Merlin. Conversely, enforced expression of a Merlin-insensitive mutant of DCAF1 counteracts the antimitogenic effect of Merlin. Re-expression of Merlin and silencing of DCAF1 implement a similar, tumor-suppressive program of gene expression. Tumor-derived mutations invariably disrupt Merlins ability to interact with or inhibit CRL4(DCAF1). Finally, depletion of DCAF1 inhibits the hyperproliferation of Schwannoma cells from NF2 patients and suppresses the oncogenic potential of Merlin-deficient tumor cell lines. We propose that Merlin suppresses tumorigenesis by translocating to the nucleus to inhibit CRL4(DCAF1).


Cell | 2006

Structure of DDB1 in Complex with a Paramyxovirus V Protein: Viral Hijack of a Propeller Cluster in Ubiquitin Ligase

Ti Li; Xiujuan Chen; Kenneth C. Garbutt; Pengbo Zhou; Ning Zheng

The DDB1-Cul4A ubiquitin ligase complex promotes protein ubiquitination in diverse cellular functions and is reprogrammed by the V proteins of paramyxoviruses to degrade STATs and block interferon signaling. Here we report the crystal structures of DDB1 alone and in complex with the simian virus 5 V protein. The DDB1 structure reveals an intertwined three-propeller cluster, which contains two tightly coupled beta propellers with a large pocket in between and a third beta propeller flexibly attached on the side. The rigid double-propeller fold of DDB1 is targeted by the viral V protein, which inserts an entire helix into the double-propeller pocket, whereas the third propeller domain docks DDB1 to the N terminus of the Cul4A scaffold. Together, these results not only provide structural insights into how the virus hijacks the DDB1-Cul4A ubiquitin ligase but also establish a structural framework for understanding the multiple functions of DDB1 in the uniquely assembled cullin-RING E3 machinery.


Journal of Biological Chemistry | 2001

UV-damaged DNA-binding Proteins Are Targets of CUL-4A-mediated Ubiquitination and Degradation

Xiaoai Chen; Yue Zhang; Leonille Douglas; Pengbo Zhou

Cul-4A, which encodes a member of the cullin family subunit of ubiquitin-protein ligases, is expressed at abnormally high levels in many tumor cells. CUL-4A can physically associate with the damagedDNA-binding protein (DDB), which is composed of two subunits, p125 and p48. DDB binds specifically to UV-damaged DNA and is believed to play a role in DNA repair. We report here that CUL-4A stimulates degradation of p48 through the ubiquitin-proteasome pathway, resulting in an overall decrease in UV-damaged DNA binding activity. The R273H mutant of p48 identified from a xeroderma pigmentosium (group E) patient is not subjected to CUL-4A-mediated proteolysis, consistent with its inability to bind CUL-4A. p125 is also an unstable protein, and its ubiquitination is stimulated by CUL-4A. However, the abundance of p125 is not dramatically altered byCul-4A overexpression. UV irradiation inhibits p125 degradation, which is temporally coupled to the UV-induced translocation of p125 from the cytoplasm into the nucleus. CUL-4A is localized primarily in the cytoplasm. These findings identify DDB subunits as the first substrates of the CUL-4A ubiquitination machinery and suggest that abnormal expression of Cul-4A results in reduced p48 levels, thus impairing the ability of DDB in lesion recognition and DNA repair in tumor cells.


Molecular Cell | 2009

CUL4A Abrogation Augments DNA Damage Response and Protection against Skin Carcinogenesis

Liren Liu; Sharrell Lee; Jianxuan Zhang; Sara B. Peters; Jeffrey Hannah; Yue Zhang; Yan Yin; Andrew Koff; Liang Ma; Pengbo Zhou

It is intuitively obvious that the ability of a cell to repair DNA damage is saturable, either by limitation of enzymatic activities, the time allotted to achieve their function, or both. However, very little is known regarding the mechanisms that establish such a threshold. Here we demonstrate that the CUL4A ubiquitin ligase restricts the cellular repair capacity by orchestrating the concerted actions of nucleotide excision repair (NER) and the DNA damage-responsive G1/S checkpoint through selective degradation of the DDB2 and XPC DNA damage sensors and the p21/CIP1/WAF1 checkpoint effector. We generated Cul4a conditional knockout mice and observed that skin-specific Cul4a ablation dramatically increased resistance to UV-induced skin carcinogenesis. Our findings reveal that wild-type cells do not operate at their full DNA repair potential, underscore the critical role of CUL4A in establishing the cellular DNA repair threshold, and highlight the potential augmentation of cellular repair proficiency by pharmacological CUL4A inhibition.


Molecular Cell | 2000

Harnessing the Ubiquitination Machinery to Target the Degradation of Specific Cellular Proteins

Pengbo Zhou; Robert Bogacki; Lisa McReynolds; Peter M. Howley

The functional characterization of a specific gene, or its protein product, often relies on assessing the consequences of its elimination, usually accomplished by gene knockout, ribozyme, antisense, or RNA-mediated interference (RNAi) technologies. The selective degradation of cellular proteins is mediated primarily by the ubiquitin-proteasome pathway. Manipulation of the ubiquitin-dependent proteolytic machinery to eliminate specific gene products at the protein level has been previously attempted with some success in vitro; however, the in vivo efficacy of this approach has not yet been achieved. Here we report successful engineering of the substrate receptor of a major ubiquitin-proteolytic machinery to direct the degradation of otherwise stable cellular proteins both in yeast and in mammalian cells.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover

Chuandong Geng; Bin He; Limei Xu; Christopher E. Barbieri; Vijay Kumar Eedunuri; Sue Anne Chew; Martin Zimmermann; Richard A. Bond; John Shou; Chao Li; Mirjam Blattner; David M. Lonard; Francesca Demichelis; Cristian Coarfa; Mark A. Rubin; Pengbo Zhou; Bert W. O’Malley; Nicholas Mitsiades

The p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2 [nuclear receptor coactivator (NCOA)2], and SRC-3 [amplified in breast cancer 1 (AIB1)/NCOA3] are key pleiotropic “master regulators” of transcription factor activity necessary for cancer cell proliferation, survival, metabolism, and metastasis. SRC overexpression and overactivation occur in numerous human cancers and are associated with poor clinical outcomes and resistance to therapy. In prostate cancer (PC), the p160 SRCs play critical roles in androgen receptor transcriptional activity, cell proliferation, and resistance to androgen deprivation therapy. We recently demonstrated that the E3 ubiquitin ligase adaptor speckle-type poxvirus and zinc finger (POZ) domain protein (SPOP) interacts directly with SRC-3 and promotes its cullin 3-dependent ubiquitination and proteolysis in breast cancer, thus functioning as a potential tumor suppressor. Interestingly, somatic heterozygous missense mutations in the SPOP substrate-binding cleft recently were identified in up to 15% of human PCs (making SPOP the gene most commonly affected by nonsynonymous point mutations in PC), but their contribution to PC pathophysiology remains unknown. We now report that PC-associated SPOP mutants cannot interact with SRC-3 protein or promote its ubiquitination and degradation. Our data suggest that wild-type SPOP plays a critical tumor suppressor role in PC cells, promoting the turnover of SRC-3 protein and suppressing androgen receptor transcriptional activity. This tumor suppressor effect is abrogated by the PC-associated SPOP mutations. These studies provide a possible explanation for the role of SPOP mutations in PC, and highlight the potential of SRC-3 as a therapeutic target in PC.


Cell | 2006

Deletion of DDB1 in Mouse Brain and Lens Leads to p53-Dependent Elimination of Proliferating Cells

Yong Cang; Jianxuan Zhang; Sally A. Nicholas; Jayson Bastien; Baojie Li; Pengbo Zhou; Stephen P. Goff

DDB1, a component of the Cul4 ubiquitin ligase complex, promotes protein ubiquitination in diverse cellular functions, including nuclear excision repair, regulation of the cell cycle, and DNA replication. To investigate its physiological significance, we generated mice with null and floxed alleles of the DDB1 gene. Here we report that null mutation of DDB1 caused early embryonic lethality, while conditional inactivation of the gene in brain and lens led to neuronal and lens degeneration, brain hemorrhages, and neonatal death. These defects stemmed from a selective elimination of nearly all proliferating neuronal progenitor cells and lens epithelial cells by apoptosis. The cell death was preceded by aberrant accumulation of cell cycle regulators and increased genomic instability and could be partially rescued by removal of the tumor suppressor protein p53. Our results indicate that DDB1 plays an essential role in maintaining viability and genomic integrity of dividing cells.

Collaboration


Dive into the Pengbo Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malcolm A. S. Moore

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Ma

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge