Pengda Liu
Beth Israel Deaconess Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pengda Liu.
Molecular Cell | 2011
Daming Gao; Hiroyuki Inuzuka; Meng Kwang Marcus Tan; Hidefumi Fukushima; Jason W. Locasale; Pengda Liu; Lixin Wan; Bo Zhai; Y. Rebecca Chin; Shavali Shaik; Costas A. Lyssiotis; Steven P. Gygi; Alex Toker; Lewis C. Cantley; John M. Asara; J. Wade Harper; Wenyi Wei
The activities of both mTORC1 and mTORC2 are negatively regulated by their endogenous inhibitor, DEPTOR. As such, the abundance of DEPTOR is a critical determinant in the activity status of the mTOR network. DEPTOR stability is governed by the 26S-proteasome through a largely unknown mechanism. Here we describe an mTOR-dependent phosphorylation-driven pathway for DEPTOR destruction via SCF(βTrCP). DEPTOR phosphorylation by mTOR in response to growth signals, and in collaboration with casein kinase I (CKI), generates a phosphodegron that binds βTrCP. Failure to degrade DEPTOR through either degron mutation or βTrCP depletion leads to reduced mTOR activity, reduced S6 kinase activity, and activation of autophagy to reduce cell growth. This work expands the current understanding of mTOR regulation by revealing a positive feedback loop involving mTOR and CKI-dependent turnover of its inhibitor, DEPTOR, suggesting that misregulation of the DEPTOR destruction pathway might contribute to aberrant activation of mTOR in disease.
Nature Reviews Cancer | 2014
Zhiwei Wang; Pengda Liu; Hiroyuki Inuzuka; Wenyi Wei
F-box proteins, which are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes, have pivotal roles in multiple cellular processes through ubiquitylation and subsequent degradation of target proteins. Dysregulation of F-box protein-mediated proteolysis leads to human malignancies. Notably, inhibitors that target F-box proteins have shown promising therapeutic potential, urging us to review the current understanding of how F-box proteins contribute to tumorigenesis. As the physiological functions for many of the 69 putative F-box proteins remain elusive, additional genetic and mechanistic studies will help to define the role of each F-box protein in tumorigenesis, thereby paving the road for the rational design of F-box protein-targeted anticancer therapies.
Nature | 2014
Pengda Liu; Michael J. Begley; Wojciech Michowski; Hiroyuki Inuzuka; Miriam B. Ginzberg; Daming Gao; Peiling Tsou; Wenjian Gan; Antonella Papa; Byeong Mo Kim; Lixin Wan; Amrik Singh; Bo Zhai; Min Yuan; Zhiwei Wang; Steven P. Gygi; Tae Ho Lee; Kun Ping Lu; Alex Toker; Pier Paolo Pandolfi; John M. Asara; Marc W. Kirschner; Piotr Sicinski; Lewis C. Cantley; Wenyi Wei
Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers, and is closely associated with poor prognosis and chemo- or radiotherapeutic resistance. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.
Cancer Discovery | 2015
Pengda Liu; Wenjian Gan; Y. Rebecca Chin; Kohei Ogura; Jianping Guo; Jinfang Zhang; Bin Wang; John Blenis; Lewis C. Cantley; Alex Toker; Bing Su; Wenyi Wei
UNLABELLED mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin homology (PH) domain of SIN1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5)P3, but not other PtdInsPn species, interacts with SIN1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical SIN1 residues that mediate PtdIns(3,4,5)P3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the SIN1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate AKT in a manner that is regulated temporally and spatially by PtdIns(3,4,5)P3. SIGNIFICANCE The SIN1-PH domain interacts with the mTOR kinase domain to suppress mTOR activity, and PtdIns(3,4,5)P3 binds the SIN1-PH domain to release its inhibition on the mTOR kinase domain, leading to mTORC2 activation. Cancer patient-derived SIN1-PH domain mutations gain oncogenicity by loss of suppressing mTOR activity as a means to facilitate tumorigenesis.
Biochimica et Biophysica Acta | 2014
Kai Xu; Pengda Liu; Wenyi Wei
mTOR (the mechanistic target of rapamycin) is an atypical serine/threonine kinase involved in regulating major cellular functions including growth and proliferation. Deregulation of the mTOR signaling pathway is one of the most commonly observed pathological alterations in human cancers. To this end, oncogenic activation of the mTOR signaling pathway contributes to cancer cell growth, proliferation and survival, highlighting the potential for targeting the oncogenic mTOR pathway members as an effective anti-cancer strategy. In order to do so, a thorough understanding of the physiological roles of key mTOR signaling pathway components and upstream regulators would guide future targeted therapies. Thus, in this review, we summarize available genetic mouse models for mTORC1 and mTORC2 components, as well as characterized mTOR upstream regulators and downstream targets, and assign a potential oncogenic or tumor suppressive role for each evaluated molecule. Together, our work will not only facilitate the current understanding of mTOR biology and possible future research directions, but more importantly, provide a molecular basis for targeted therapies aiming at key oncogenic members along the mTOR signaling pathway.
Biochimica et Biophysica Acta | 2012
Zhiwei Wang; Daming Gao; Hidefumi Fukushima; Hiroyuki Inuzuka; Pengda Liu; Lixin Wan; Fazlul H. Sarkar; Wenyi Wei
Prostate cancer is the most frequently diagnosed tumor in men and the second most common cause of cancer-related death for males in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of prostate cancer, such as androgen receptor (AR), Akt, Wnt, Hedgehog (Hh) and Notch. Recently, burgeoning amounts of evidence have implicated that the F-box protein Skp2 (S-phase kinase associated protein 2), a well-characterized oncoprotein, also plays a critical role in the development and progression of prostate cancer. Therefore, this review discusses the recent literature regarding the function and regulation of Skp2 in the pathogenesis of prostate cancer. Furthermore, we highlight that Skp2 may represent an attractive therapeutic target, thus warrants further development of agents to target Skp2, which could have significant therapeutic impact on prostate cancer.
Frontiers in Oncology | 2012
Zhiwei Wang; Hidefumi Fukushima; Hiroyuki Inuzuka; Lixin Wan; Pengda Liu; Daming Gao; Fazlul H. Sarkar; Wenyi Wei
Breast cancer is the most common type of cancer among American women, and remains the second leading cause of cancer-related death for female in the United States. It has been known that several signaling pathways and various factors play critical roles in the development and progression of breast cancer, such as estrogen receptor, Notch, PTEN, human epidermal growth factor receptor 2, PI3K/Akt, BRCA1, and BRCA2. Emerging evidence has shown that the F-box protein S-phase kinase associated protein 2 (Skp2) also plays an important role in the pathogenesis of breast cancer. Therefore, in this brief review, we summarize the novel functions of Skp2 in the pathogenesis of breast cancer. Moreover, we provide further evidence regarding the state of our knowledge toward the development of novel Skp2 inhibitors especially natural “chemopreventive agents” as targeted approach for the prevention and/or treatment of breast cancer.
Cell Reports | 2013
Hidefumi Fukushima; Kohei Ogura; Lixin Wan; Ying Lu; Victor C. Li; Daming Gao; Pengda Liu; Alan W. Lau; Tao Wu; Marc W. Kirschner; Hiroyuki Inuzuka; Wenyi Wei
Proper cell-cycle transitions are driven by waves of ubiquitin-dependent degradation of key regulators by the anaphase-promoting complex (APC) and Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligase complexes. But precisely how APC and SCF activities are coordinated to regulate cell-cycle progression remains largely unclear. We previously showed that APC/Cdh1 earmarks the SCF component Skp2 for degradation. Here, we continue to report that SCF(β-TRCP) reciprocally controls APC/Cdh1 activity by governing Cdh1 ubiquitination and subsequent degradation. Furthermore, we define both cyclin A and Plk1, two well-known Cdh1 substrates, as upstream modifying enzymes that promote Cdh1 phosphorylation to trigger Cdh1 ubiquitination and subsequent degradation by SCF(β-TRCP). Thus, our work reveals a negative repression mechanism for SCF to control APC, thereby illustrating an elegant dual repression system between these two E3 ligase complexes to create the ordered cascade of APC and SCF activities governing timely cell-cycle transitions.
Science | 2016
Jianping Guo; Abhishek A. Chakraborty; Pengda Liu; Wenjian Gan; Xingnan Zheng; Hiroyuki Inuzuka; Bin Wang; Jinfang Zhang; Linli Zhang; Min Yuan; Jesse Novak; Jin Q. Cheng; Alex Toker; Sabina Signoretti; Qing Zhang; John M. Asara; William G. Kaelin; Wenyi Wei
Activation of the serine-threonine kinase Akt promotes the survival and proliferation of various cancers. Hypoxia promotes the resistance of tumor cells to specific therapies. We therefore explored a possible link between hypoxia and Akt activity. We found that Akt was prolyl-hydroxylated by the oxygen-dependent hydroxylase EglN1. The von Hippel–Lindau protein (pVHL) bound directly to hydroxylated Akt and inhibited Akt activity. In cells lacking oxygen or functional pVHL, Akt was activated to promote cell survival and tumorigenesis. We also identified cancer-associated Akt mutations that impair Akt hydroxylation and subsequent recognition by pVHL, thus leading to Akt hyperactivation. Our results show that microenvironmental changes, such as hypoxia, can affect tumor behaviors by altering Akt activation, which has a critical role in tumor growth and therapeutic resistance.
Protein & Cell | 2014
Pengda Liu; Jianping Guo; Wenjian Gan; Wenyi Wei
Mammalian target of rapamycin (mTOR) plays essential roles in cell proliferation, survival and metabolism by forming at least two functional distinct multi-protein complexes, mTORC1 and mTORC2. External growth signals can be received and interpreted by mTORC2 and further transduced to mTORC1. On the other hand, mTORC1 can sense inner-cellular physiological cues such as amino acids and energy states and can indirectly suppress mTORC2 activity in part through phosphorylation of its upstream adaptors, IRS-1 or Grb10, under insulin or IGF-1 stimulation conditions. To date, upstream signaling pathways governing mTORC1 activation have been studied extensively, while the mechanisms modulating mTORC2 activity remain largely elusive. We recently reported that Sin1, an essential mTORC2 subunit, was phosphorylated by either Akt or S6K in a cellular context-dependent manner. More importantly, phosphorylation of Sin1 at T86 and T398 led to a dissociation of Sin1 from the functional mTORC2 holo-enzyme, resulting in reduced Akt activity and sensitizing cells to various apoptotic challenges. Notably, an ovarian cancer patient-derived Sin1-R81T mutation abolished Sin1-T86 phosphorylation by disrupting the canonical S6K-phoshorylation motif, thereby bypassing Sin1-phosphorylation-mediated suppression of mTORC2 and leading to sustained Akt signaling to promote tumorigenesis. Our work therefore provided physiological and pathological evidence to reveal the biological significance of Sin1 phosphorylation-mediated suppression of the mTOR/Akt oncogenic signaling, and further suggested that misregulation of this process might contribute to Akt hyper-activation that is frequently observed in human cancers.