Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Penny A. Jeggo is active.

Publication


Featured researches published by Penny A. Jeggo.


Molecular Cell | 2008

ATM Signaling Facilitates Repair of DNA Double-Strand Breaks Associated with Heterochromatin

Aaron A. Goodarzi; Angela T. Noon; Dorothee Deckbar; Yael Ziv; Yosef Shiloh; Markus Löbrich; Penny A. Jeggo

Ataxia Telangiectasia Mutated (ATM) signaling is essential for the repair of a subset of DNA double-strand breaks (DSBs); however, its precise role is unclear. Here, we show that < or =25% of DSBs require ATM signaling for repair, and this percentage correlates with increased chromatin but not damage complexity. Importantly, we demonstrate that heterochromatic DSBs are generally repaired more slowly than euchromatic DSBs, and ATM signaling is specifically required for DSB repair within heterochromatin. Significantly, knockdown of the transcriptional repressor KAP-1, an ATM substrate, or the heterochromatin-building factors HP1 or HDAC1/2 alleviates the requirement for ATM in DSB repair. We propose that ATM signaling temporarily perturbs heterochromatin via KAP-1, which is critical for DSB repair/processing within otherwise compacted/inflexible chromatin. In support of this, ATM signaling alters KAP-1 affinity for chromatin enriched for heterochromatic factors. These data suggest that the importance of ATM signaling for DSB repair increases as the heterochromatic component of a genome expands.


Nature Genetics | 2003

A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome

Mark O'Driscoll; Victor L. Ruiz-Perez; C. Geoffrey Woods; Penny A. Jeggo; Judith A. Goodship

Seckel syndrome (OMIM 210600) is an autosomal recessive disorder characterized by intrauterine growth retardation, dwarfism, microcephaly and mental retardation. Clinically, Seckel syndrome shares features in common with disorders involving impaired DNA-damage responses, such as Nijmegen breakage syndrome (OMIM 251260) and LIG4 syndrome (OMIM 606593). We previously mapped a locus associated with Seckel syndrome to chromosome 3q22.1–q24 in two consanguineous Pakistani families. Further marker analysis in the families, including a recently born unaffected child with a recombination in the critical region, narrowed the region to an interval of 5 Mbp between markers D3S1316 and D3S1557 (145.29 Mbp and 150.37 Mbp). The gene encoding ataxia–telangiectasia and Rad3–related protein (ATR) maps to this region. A fibroblast cell line derived from an affected individual displays a defective DNA damage response caused by impaired ATR function. We identified a synonymous mutation in affected individuals that alters ATR splicing. The mutation confers a phenotype including marked microcephaly (head circumference 12 s.d. below the mean) and dwarfism (5 s.d. below the mean). Our analysis shows that UV-induced ATR activation can occur in non-replicating cells following processing by nucleotide excision repair.


Nature Reviews Genetics | 2006

The role of double-strand break repair : insights from human genetics

Mark O'Driscoll; Penny A. Jeggo

The efficient repair of DNA double-strand breaks is crucial in safeguarding the genomic integrity of organisms. Responses to double-strand breaks include complex signal-transduction, cell-cycle-checkpoint and repair pathways. Defects in these pathways lead to several human disorders with pleiotropic clinical features. Dissection of the molecular basis that underlies the diverse clinical features is enhancing our understanding of the damage-response mechanisms and their role in development, and might ultimately facilitate treatment.


Molecular Cell | 2001

DNA Ligase IV Mutations Identified in Patients Exhibiting Developmental Delay and Immunodeficiency

Mark O'Driscoll; Karen Cerosaletti; Pierre M. Girard; Markus Stumm; Boris Kysela; Betsy Hirsch; Andrew R. Gennery; Susan E. Palmer; Jörg Seidel; Richard A. Gatti; Raymonda Varon; Marjorie A. Oettinger; Heidemarie Neitzel; Penny A. Jeggo; Patrick Concannon

DNA ligase IV functions in DNA nonhomologous end-joining and V(D)J recombination. Four patients with features including immunodeficiency and developmental and growth delay were found to have mutations in the gene encoding DNA ligase IV (LIG4). Their clinical phenotype closely resembles the DNA damage response disorder, Nijmegen breakage syndrome (NBS). Some of the mutations identified in the patients directly disrupt the ligase domain while others impair the interaction between DNA ligase IV and Xrcc-4. Cell lines from the patients show pronounced radiosensitivity. Unlike NBS cell lines, they show normal cell cycle checkpoint responses but impaired DNA double-strand break rejoining. An unexpected V(D)J recombination phenotype is observed involving a small decrease in rejoining frequency coupled with elevated imprecision at signal junctions.


Cell Cycle | 2010

γH2AX foci analysis for monitoring DNA double-strand break repair: Strengths, limitations and optimization

Markus Löbrich; Atsushi Shibata; Andrea Beucher; Anna Fisher; Michael Ensminger; Aaron A. Goodarzi; Olivia Barton; Penny A. Jeggo

DNA double-strand breaks (DSBs) represent an important radiation-induced lesion and impaired DSB repair provides the best available correlation with radiosensitivity. Physical techniques for monitoring DSB repair require high, non-physiological doses and cannot reliably detect subtle defects. One outcome from extensive research into the DNA damage response is the observation that H2AX, a variant form of the histone H2A, undergoes extensive phosphorylation at the DSB, creating γH2AX foci that can be visualised by immunofluorescence. There is a close correlation between γH2AX foci and DSB numbers and between the rate of foci loss and DSB repair, providing a sensitive assay to monitor DSB repair in individual cells using physiological doses. However, γH2AX formation can occur at single-stranded DNA regions which arise during replication or repair and thus does not solely correlate with DSB formation. Here, we present and discuss evidence that following exposure to ionising radiation, γH2AX foci analysis can provide a sensitive monitor of DSB formation and repair and describe techniques to optimise the analysis. We discuss the limitations and benefits of the technique, enabling the procedure to be optimally exploited but not misused.


Nature Reviews Cancer | 2007

The impact of a negligent G2/M checkpoint on genomic instability and cancer induction

Markus Löbrich; Penny A. Jeggo

DNA damage responses (DDR) encompass DNA repair and signal transduction pathways that effect cell cycle checkpoint arrest and/or apoptosis. How DDR pathways respond to low levels of DNA damage, including low doses of ionizing radiation, is crucial for assessing environmental cancer risk. It has been assumed that damage-induced cell cycle checkpoints respond to a single double strand break (DSB) but the G2/M checkpoint, which prevents entry into mitosis, has recently been shown to have a defined threshold of 10–20 DSBs. Here, we consider the impact of a negligent G2/M checkpoint on genomic stability and cancer risk.


Trends in Biochemical Sciences | 1995

DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK

Penny A. Jeggo

Two processes involving DNA double-strand breaks (DSBs) are the repair of DNA damage induced by ionizing radiation, and V(D)J recombination, the genomic rearrangement that creates antigen-receptor diversity in vertebrates. Recent evidence indicates that DNA-dependent protein kinase (DNA-PK), which is activated by DNA ends, is a central component of both the DNA DSB repair and V(D)J recombination machineries.


Current Biology | 1999

Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient

Enriqueta Riballo; Susan E. Critchlow; Soo-Hwang Teo; Aidan J. Doherty; Priestley A; Bernard C. Broughton; Boris Kysela; Beamish H; Plowman N; C.F. Arlett; Alan R. Lehmann; Penny A. Jeggo

The major mechanism for the repair of DNA double-strand breaks (DSBs) in mammalian cells is non-homologous end-joining (NHEJ), a process that involves the DNA-dependent protein kinase [1] [2], XRCC4 and DNA ligase IV [3] [4] [5] [6]. Rodent cells and mice defective in these components are radiation-sensitive and defective in V(D)J-recombination, showing that NHEJ also functions to rejoin DSBs introduced during lymphocyte development [7] [8]. 180BR is a radiosensitive cell line defective in DSB repair, which was derived from a leukaemia patient who was highly sensitive to radiotherapy [9] [10] [11]. We have identified a mutation within a highly conserved motif encompassing the active site in DNA ligase IV from 180BR cells. The mutated protein is severely compromised in its ability to form a stable enzyme-adenylate complex, although residual activity can be detected at high ATP concentrations. Our results characterize the first patient with a defect in an NHEJ component and suggest that a significant defect in NHEJ that leads to pronounced radiosensitivity is compatible with normal human viability and does not cause any major immune dysfunction. The defect, however, may confer a predisposition to leukaemia.


Cancer Research | 2004

A Double-Strand Break Repair Defect in ATM-Deficient Cells Contributes to Radiosensitivity

Martin Kühne; Enriqueta Riballo; Nicole Rief; Kai Rothkamm; Penny A. Jeggo; Markus Löbrich

The ATM protein, which is mutated in individuals with ataxia telangiectasia (AT), is central to cell cycle checkpoint responses initiated by DNA double-strand breaks (DSBs). ATM’s role in DSB repair is currently unclear as is the basis underlying the radiosensitivity of AT cells. We applied immunofluorescence detection of γ-H2AX nuclear foci and pulsed-field gel electrophoresis to quantify the repair of DSBs after X-ray doses between 0.02 and 80 Gy in confluence-arrested primary human fibroblasts from normal individuals and patients with mutations in ATM and DNA ligase IV, a core component of the nonhomologous end-joining (NHEJ) repair pathway. Cells with hypomorphic mutations in DNA ligase IV exhibit a substantial repair defect up to 24 h after treatment but continue to repair for several days and finally reach a level of unrepaired DSBs similar to that of wild-type cells. Additionally, the repair defect in NHEJ mutants is dose dependent. ATM-deficient cells, in contrast, repair the majority of DSBs with normal kinetics but fail to repair a subset of breaks, irrespective of the initial number of lesions induced. Significantly, after biologically relevant radiation doses and/or long repair times, the repair defect in AT cells is more pronounced than that of NHEJ mutants and correlates with radiosensitivity. NHEJ-defective cells analyzed for survival following delayed plating after irradiation show substantial recovery while AT cells fail to show any recovery. These data argue that the DSB repair defect underlies a significant component of the radiosensitivity of AT cells.


The EMBO Journal | 2006

ATR‐dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling

Thomas Stiff; Sarah A. Walker; Karen Cerosaletti; Aaron A. Goodarzi; Eva Petermann; Pat Concannon; Mark O'Driscoll; Penny A. Jeggo

The phosphatidyl inositol 3‐kinase‐like kinases (PIKKs), ataxia‐telangiectasia mutated (ATM) and ATM‐ and Rad3‐related (ATR) regulate parallel damage response signalling pathways. ATM is reported to be activated by DNA double‐strand breaks (DSBs), whereas ATR is recruited to single‐stranded regions of DNA. Although the two pathways were considered to function independently, recent studies have demonstrated that ATM functions upstream of ATR following exposure to ionising radiation (IR) in S/G2. Here, we show that ATM phosphorylation at Ser1981, a characterised autophosphorylation site, is ATR‐dependent and ATM‐independent following replication fork stalling or UV treatment. In contrast to IR‐induced ATM‐S1981 phosphorylation, UV‐induced ATM‐S1981 phosphorylation does not require the Nbs1 C‐terminus or Mre11. ATR‐dependent phosphorylation of ATM activates ATM phosphorylation of Chk2, which has an overlapping function with Chk1 in regulating G2/M checkpoint arrest. Our findings provide insight into the interplay between the PIKK damage response pathways.

Collaboration


Dive into the Penny A. Jeggo's collaboration.

Top Co-Authors

Avatar

Markus Löbrich

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge