Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Penny Flohr is active.

Publication


Featured researches published by Penny Flohr.


Cell | 2015

Integrative clinical genomics of advanced prostate cancer

Dan R. Robinson; Eliezer M. Van Allen; Yi Mi Wu; Nikolaus Schultz; Robert J. Lonigro; Juan Miguel Mosquera; Bruce Montgomery; Mary-Ellen Taplin; Colin C. Pritchard; Gerhardt Attard; Himisha Beltran; Wassim Abida; Robert K. Bradley; Jake Vinson; Xuhong Cao; Pankaj Vats; Lakshmi P. Kunju; Maha Hussain; Felix Y. Feng; Scott A. Tomlins; Kathleen A. Cooney; David C. Smith; Christine Brennan; Javed Siddiqui; Rohit Mehra; Yu Chen; Dana E. Rathkopf; Michael J. Morris; Stephen B. Solomon; Jeremy C. Durack

Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.


The New England Journal of Medicine | 2015

DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer

Joaquin Mateo; Suzanne Carreira; Shahneen Sandhu; Susana Miranda; Helen Mossop; Raquel Perez-Lopez; Daniel Nava Rodrigues; Dan R. Robinson; Aurelius Omlin; Nina Tunariu; Gunther Boysen; Nuria Porta; Penny Flohr; Alexa Gillman; Ines Figueiredo; Claire Paulding; George Seed; Suneil Jain; Christy Ralph; Andrew Protheroe; Syed A. Hussain; Robert Jones; Tony Elliott; Ursula McGovern; Diletta Bianchini; Jane Goodall; Zafeiris Zafeiriou; Chris T. Williamson; Roberta Ferraldeschi; Ruth Riisnaes

BACKGROUND Prostate cancer is a heterogeneous disease, but current treatments are not based on molecular stratification. We hypothesized that metastatic, castration-resistant prostate cancers with DNA-repair defects would respond to poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibition with olaparib. METHODS We conducted a phase 2 trial in which patients with metastatic, castration-resistant prostate cancer were treated with olaparib tablets at a dose of 400 mg twice a day. The primary end point was the response rate, defined either as an objective response according to Response Evaluation Criteria in Solid Tumors, version 1.1, or as a reduction of at least 50% in the prostate-specific antigen level or a confirmed reduction in the circulating tumor-cell count from 5 or more cells per 7.5 ml of blood to less than 5 cells per 7.5 ml. Targeted next-generation sequencing, exome and transcriptome analysis, and digital polymerase-chain-reaction testing were performed on samples from mandated tumor biopsies. RESULTS Overall, 50 patients were enrolled; all had received prior treatment with docetaxel, 49 (98%) had received abiraterone or enzalutamide, and 29 (58%) had received cabazitaxel. Sixteen of 49 patients who could be evaluated had a response (33%; 95% confidence interval, 20 to 48), with 12 patients receiving the study treatment for more than 6 months. Next-generation sequencing identified homozygous deletions, deleterious mutations, or both in DNA-repair genes--including BRCA1/2, ATM, Fanconis anemia genes, and CHEK2--in 16 of 49 patients who could be evaluated (33%). Of these 16 patients, 14 (88%) had a response to olaparib, including all 7 patients with BRCA2 loss (4 with biallelic somatic loss, and 3 with germline mutations) and 4 of 5 with ATM aberrations. The specificity of the biomarker suite was 94%. Anemia (in 10 of the 50 patients [20%]) and fatigue (in 6 [12%]) were the most common grade 3 or 4 adverse events, findings that are consistent with previous studies of olaparib. CONCLUSIONS Treatment with the PARP inhibitor olaparib in patients whose prostate cancers were no longer responding to standard treatments and who had defects in DNA-repair genes led to a high response rate. (Funded by Cancer Research UK and others; ClinicalTrials.gov number, NCT01682772; Cancer Research UK number, CRUK/11/029.).


Oncogene | 2008

Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer

Gerhardt Attard; Jeremy Clark; Laurence Ambroisine; Gabrielle Fisher; Gyula Kovacs; Penny Flohr; D. Berney; Christopher S. Foster; Anne Fletcher; William L. Gerald; Henrik Møller; Victor E. Reuter; J. S. De Bono; Peter T. Scardino; Jack Cuzick; Colin S. Cooper

New predictive markers for managing prostate cancer are urgently required because of the highly variable natural history of this disease. At the time of diagnosis, Gleason score provides the gold standard for assessing the aggressiveness of prostate cancer. However, the recent discovery of TMPRSS2 fusions to the ERG gene in prostate cancer raises the possibility of using alterations at the ERG locus as additional mechanism-based prognostic indicators. Fluorescence in situ hybridization (FISH) assays were used to assess ERG gene status in a cohort of 445 prostate cancers from patients who had been conservatively managed. The FISH assays detected separation of 5′ (labelled green) and 3′ (labelled red) ERG sequences, which is a consequence of the TMPRSS2–ERG fusion, and additionally identify interstitial deletion of genomic sequences between the tandemly located TMPRSS2 and ERG gene sequences on chromosome 21. Cancers lacking ERG alterations exhibited favourable cause-specific survival (90% survival at 8 years). We identify a novel category of prostate cancers, characterized by duplication of the fusion of TMPRSS2 to ERG sequences together with interstitial deletion of sequences 5′ to ERG (called ‘2+Edel’), which by comparison exhibited extremely poor cause-specific survival (hazard ratio=6.10, 95% confidence ratio=3.33–11.15, P<0.001, 25% survival at 8 years). In multivariate analysis, ‘2+Edel’ provided significant prognostic information (P=0.003) in addition to that provided by Gleason score and prostate-specific antigen level at diagnosis. Other individual categories of ERG alteration were associated with intermediate or good prognosis. We conclude that determination of ERG gene status, including duplication of the fusion of TMPRSS2 to ERG sequences in 2+Edel, allows stratification of prostate cancer into distinct survival categories.


Oncogene | 2007

Diversity of TMPRSS2-ERG fusion transcripts in the human prostate

Jeremy Clark; Sue Merson; Sameer Jhavar; Penny Flohr; S Edwards; Christopher S. Foster; Rosalind Eeles; Frank L. Martin; David H. Phillips; M. Crundwell; Timothy Christmas; Alastair M. Thompson; Cyril Fisher; Gyula Kovacs; Colin S. Cooper

TMPRSS2-ERG gene fusions have recently been reported to be present in a high proportion of human prostate cancers. In the current study, we show that great diversity exists in the precise structure of TMPRSS2-ERG hybrid transcripts found in human prostates. Fourteen distinct hybrid transcripts are characterized, each containing different combinations of sequences from the TMPRSS2 and ERG genes. The transcripts include two that are predicted to encode a normal full-length ERG protein, six that encode N-terminal truncated ERG proteins and one that encodes a TMPRSS2-ERG fusion protein. Interestingly, distinct patterns of hybrid transcripts were found in samples taken from separate regions of individual cancer-containing prostates, suggesting that TMPRSS2-ERG gene fusions may be arising independently in different regions of a single prostate.


British Journal of Cancer | 2010

Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer

Alison Reid; Gerhardt Attard; Laurence Ambroisine; Gabrielle Fisher; Gyula Kovacs; Daniel Brewer; Jeremy Clark; Penny Flohr; S Edwards; Daniel M. Berney; Christopher S. Foster; Anne Fletcher; William L. Gerald; Henrik Møller; Victor E. Reuter; Peter T. Scardino; Jack Cuzick; J. S. De Bono; Colin S. Cooper

Background:The discovery of ERG/ETV1 gene rearrangements and PTEN gene loss warrants investigation in a mechanism-based prognostic classification of prostate cancer (PCa). The study objective was to evaluate the potential clinical significance and natural history of different disease categories by combining ERG/ETV1 gene rearrangements and PTEN gene loss status.Methods:We utilised fluorescence in situ hybridisation (FISH) assays to detect PTEN gene loss and ERG/ETV1 gene rearrangements in 308 conservatively managed PCa patients with survival outcome data.Results:ERG/ETV1 gene rearrangements alone and PTEN gene loss alone both failed to show a link to survival in multivariate analyses. However, there was a strong interaction between ERG/ETV1 gene rearrangements and PTEN gene loss (P<0.001). The largest subgroup of patients (54%), lacking both PTEN gene loss and ERG/ETV1 gene rearrangements comprised a ‘good prognosis’ population exhibiting favourable cancer-specific survival (85.5% alive at 11 years). The presence of PTEN gene loss in the absence of ERG/ETV1 gene rearrangements identified a patient population (6%) with poorer cancer-specific survival that was highly significant (HR=4.87, P<0.001 in multivariate analysis, 13.7% survival at 11 years) when compared with the ‘good prognosis’ group. ERG/ETV1 gene rearrangements and PTEN gene loss status should now prospectively be incorporated into a predictive model to establish whether predictive performance is improved.Conclusions:Our data suggest that FISH studies of PTEN gene loss and ERG/ETV1 gene rearrangements could be pursued for patient stratification, selection and hypothesis-generating subgroup analyses in future PCa clinical trials and potentially in patient management.


Science Translational Medicine | 2015

Plasma AR and abiraterone-resistant prostate cancer

Alessandro Romanel; Delila Gasi Tandefelt; Vincenza Conteduca; Anuradha Jayaram; Nicola Casiraghi; Daniel Wetterskog; Samanta Salvi; Dino Amadori; Zafeiris Zafeiriou; Pasquale Rescigno; Diletta Bianchini; Giorgia Gurioli; Valentina Casadio; Suzanne Carreira; Jane Goodall; Anna Wingate; Roberta Ferraldeschi; Nina Tunariu; Penny Flohr; Ugo De Giorgi; Johann S. de Bono; Francesca Demichelis; Gerhardt Attard

Androgen receptor mutations and amplifications in circulating tumor DNA provide clues to prostate cancer drug resistance. Detecting resistance before it starts Androgen receptor targeting is the cornerstone of prostate cancer treatment. Even when the tumors become “castration-resistant” or no longer sensitive to androgen deprivation, androgen signaling can still be effectively targeted by newer drugs such as abiraterone and enzalutamide, which also inhibit the androgen signaling axis. Romanel et al. analyzed tumor DNA samples from the blood of 97 patients with castration-resistant prostate cancer at different times during the course of treatment with abiraterone. Although some new mutations emerged during therapy, the authors found that androgen receptor amplifications were present from the beginning and correlated with abiraterone resistance, suggesting that detection of these amplifications should be useful for identifying abiraterone-resistant cancers before starting treatment. Androgen receptor (AR) gene aberrations are rare in prostate cancer before primary hormone treatment but emerge with castration resistance. To determine AR gene status using a minimally invasive assay that could have broad clinical utility, we developed a targeted next-generation sequencing approach amenable to plasma DNA, covering all AR coding bases and genomic regions that are highly informative in prostate cancer. We sequenced 274 plasma samples from 97 castration-resistant prostate cancer patients treated with abiraterone at two institutions. We controlled for normal DNA in patients’ circulation and detected a sufficiently high tumor DNA fraction to quantify AR copy number state in 217 samples (80 patients). Detection of AR copy number gain and point mutations in plasma were inversely correlated, supported further by the enrichment of nonsynonymous versus synonymous mutations in AR copy number normal as opposed to AR gain samples. Whereas AR copy number was unchanged from before treatment to progression and no mutant AR alleles showed signal for acquired gain, we observed emergence of T878A or L702H AR amino acid changes in 13% of tumors at progression on abiraterone. Patients with AR gain or T878A or L702H before abiraterone (45%) were 4.9 and 7.8 times less likely to have a ≥50 or ≥90% decline in prostate-specific antigen (PSA), respectively, and had a significantly worse overall [hazard ratio (HR), 7.33; 95% confidence interval (CI), 3.51 to 15.34; P = 1.3 × 10−9) and progression-free (HR, 3.73; 95% CI, 2.17 to 6.41; P = 5.6 × 10−7) survival. Evaluation of plasma AR by next-generation sequencing could identify cancers with primary resistance to abiraterone.


Oncogene | 2008

Complex patterns of ETS gene alteration arise during cancer development in the human prostate

Jeremy Clark; Gerhardt Attard; Sameer Jhavar; Penny Flohr; Alison Reid; Johann De-Bono; Rosalind Eeles; Peter T. Scardino; Jack Cuzick; Gabrielle Fisher; Matthew Parker; Christopher S. Foster; D. Berney; Gyula Kovacs; Colin S. Cooper

An ERG gene ‘break-apart’ fluorescence in situ hybridization (FISH) assay has been used to screen whole-mount prostatectomy specimens for rearrangements at the ERG locus. In cancers containing ERG alterations the observed pattern of changes was often complex. Different categories of ERG gene alteration were found either together in a single cancerous region or within separate foci of cancer in the same prostate slice. In some cases the juxtaposition of particular patterns of ERG alterations suggested possible mechanisms of tumour progression. Prostates harbouring ERG alterations commonly also contained cancer that lacked rearrangements of the ERG gene. A single trans-urethral resection of the prostate specimen examined harboured both ERG and ETV1 gene rearrangements demonstrating that the observed complexity may, at least in part, be explained by multiple ETS gene alterations arising independently in a single prostate. In a search for possible precursor lesions clonal ERG rearrangements were found both in high grade prostatic intraepithelial neoplasia (PIN) and in atypical in situ epithelial lesions consistent with the diagnosis of low grade PIN. Our observations support the view that ERG gene alterations represent an initiating event that promotes clonal expansion initially to form regions of epithelial atypia. The complex patterns of ERG alteration found in prostatectomy specimens have important implications for the design of experiments investigating the clinical significance and mechanism of development of individual prostate cancers.


Oncogene | 2004

Amplification and overexpression of E2F3 in human bladder cancer

Andrew Feber; Jeremy Clark; Graham H. Goodwin; Andrew Dodson; Paul H. Smith; Anne Fletcher; Sandra Edwards; Penny Flohr; Alison Falconer; Toby Roe; Gyula Kovacs; Nening Dennis; Cyril Fisher; Richard Wooster; Robert Huddart; Christopher S. Foster; Colin S. Cooper

We demonstrate that, in human bladder cancer, amplification of the E2F3 gene, located at 6p22, is associated with overexpression of its encoded mRNA transcripts and high levels of expression of E2F3 protein. Immunohistochemical analyses of E2F3 protein levels have established that around one-third (33/101) of primary transitional cell carcinomas of the bladder overexpress nuclear E2F3 protein, with the proportion of tumours containing overexpressed nuclear E2F3 increasing with tumour stage and grade. When considered together with the established role of E2F3 in cell cycle progression, these results suggest that the E2F3 gene represents a candidate bladder cancer oncogene that is activated by DNA amplification and overexpression.


Oncogene | 2003

Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays

Jeremy Clark; S Edwards; Andrew Feber; Penny Flohr; Megan John; Ian Giddings; Sue Crossland; Michael R. Stratton; Richard Wooster; Colin Campbell; Colin S. Cooper

We demonstrate that comparative genomic hybridization (CGH) onto cDNA microarrays may be used to carry out genome-wide screens for regions of genetic loss, including homozygous (complete) deletions that may represent the possible location of tumour suppressor genes in human cancer. Screening of the prostate cancer cell lines LNCaP, PC3 and DU145 allowed the mapping of specific regions where genome copy number appeared altered and led to the identification of two novel regions of complete loss at 17q21.31 (500 kb spanning STAT3) and at 10q23.1 (50–350 kb spanning SFTPA2) in the PC3 cell line.


British Journal of Cancer | 2008

Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer

Gerhardt Attard; Jeremy Clark; Laurence Ambroisine; Ian G. Mills; Gabrielle Fisher; Penny Flohr; Alison Reid; S Edwards; Gyula Kovacs; D. Berney; Christopher S. Foster; Charlie E. Massie; Anne Fletcher; J. S. De Bono; Peter T. Scardino; Jack Cuzick; Colin S. Cooper

A fluorescence in situ hybridisation (FISH) assay has been used to screen for ETV1 gene rearrangements in a cohort of 429 prostate cancers from patients who had been diagnosed by trans-urethral resection of the prostate. The presence of ETV1 gene alterations (found in 23 cases, 5.4%) was correlated with higher Gleason Score (P=0.001), PSA level at diagnosis (P=<0.0001) and clinical stage (P=0.017) but was not linked to poorer survival. We found that the six previously characterised translocation partners of ETV1 only accounted for 34% of ETV1 re-arrangements (eight out of 23) in this series, with fusion to the androgen-repressed gene C15orf21 representing the commonest event (four out of 23). In 5′-RACE experiments on RNA extracted from formalin-fixed tissue we identified the androgen-upregulated gene ACSL3 as a new 5′-translocation partner of ETV1. These studies report a novel fusion partner for ETV1 and highlight the considerable heterogeneity of ETV1 gene rearrangements in human prostate cancer.

Collaboration


Dive into the Penny Flohr's collaboration.

Top Co-Authors

Avatar

Colin S. Cooper

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Jeremy Clark

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Gerhardt Attard

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Mateus Crespo

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Johann S. de Bono

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Diletta Bianchini

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

J. S. De Bono

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Joaquin Mateo

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge