Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Penny J. Norsworthy is active.

Publication


Featured researches published by Penny J. Norsworthy.


Nature Genetics | 1999

Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats

Timothy J. Aitman; Anne M. Glazier; Caroline A. Wallace; Lisa D. Cooper; Penny J. Norsworthy; Faisal N. Wahid; Khulood M. Al-Majali; Paul M. Trembling; Christopher J. Mann; Carol C. Shoulders; Daniel Graf; Elizabeth St. Lezin; Theodore W. Kurtz; Vladimir Kren; Michal Pravenec; Azeddine Ibrahimi; Nada A. Abumrad; Lawrence W. Stanton; James Scott

The human insulin-resistance syndromes, type 2 diabetes, obesity, combined hyperlipidaemia and essential hypertension, are complex disorders whose genetic basis is unknown. The spontaneously hypertensive rat (SHR) is insulin resistant and a model of these human syndromes. Quantitative trait loci (QTLs) for SHR defects in glucose and fatty acid metabolism, hypertriglyceridaemia and hypertension map to a single locus on rat chromosome 4. Here we combine use of cDNA microarrays, congenic mapping and radiation hybrid (RH) mapping to identify a defective SHR gene, Cd36 (also known as Fat, as it encodes fatty acid translocase), at the peak of linkage to these QTLs. SHR Cd36 cDNA contains multiple sequence variants, caused by unequal genomic recombination of a duplicated ancestral gene. The encoded protein product is undetectable in SHR adipocyte plasma membrane. Transgenic mice overexpressing Cd36 have reduced blood lipids. We conclude that Cd36 deficiency underlies insulin resistance, defective fatty acid metabolism and hypertriglyceridaemia in SHR and may be important in the pathogenesis of human insulin-resistance syndromes.


Nature | 2006

Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans

Timothy J. Aitman; Rong Dong; Timothy J. Vyse; Penny J. Norsworthy; Michelle D. Johnson; Jennifer A. Smith; Jonathan Mangion; Cheri Roberton-Lowe; Amy J. Marshall; Enrico Petretto; Matthew D. Hodges; Gurjeet Bhangal; Sheetal G. Patel; Kelly Sheehan-Rooney; Mark Duda; Paul R. Cook; David J. Evans; Jan Domin; Jonathan Flint; Joseph J. Boyle; Charles D. Pusey; H. Terence Cook

Identification of the genes underlying complex phenotypes and the definition of the evolutionary forces that have shaped eukaryotic genomes are among the current challenges in molecular genetics. Variation in gene copy number is increasingly recognized as a source of inter-individual differences in genome sequence and has been proposed as a driving force for genome evolution and phenotypic variation. Here we show that copy number variation of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the newly described, rat-specific Fcgr3 paralogue, Fcgr3-related sequence (Fcgr3-rs), as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B, an orthologue of rat Fcgr3, was associated with glomerulonephritis in the autoimmune disease systemic lupus erythematosus. The finding that gene copy number polymorphism predisposes to immunologically mediated renal disease in two mammalian species provides direct evidence for the importance of genome plasticity in the evolution of genetically complex phenotypes, including susceptibility to common human disease.


Nature | 2000

Malaria susceptibility and CD36 mutation.

Timothy J. Aitman; Lisa D. Cooper; Penny J. Norsworthy; Faisal N. Wahid; Jennefer K. Gray; Brian R. Curtis; Paul McKeigue; Dominic P. Kwiatkowski; Brian Greenwood; Robert W. Snow; Adrian V. S. Hill; James Scott

A critical step in infection by Plasmodium falciparum, the microorganism that causes the most severe form of malaria, is the adhesion of parasitized red blood cells to capillary endothelium. The human protein CD36 is a major receptor for P. falciparum-infected red blood cells and may contribute to the disease by sequestering infected red blood cells and inhibiting the immune response to the parasite. We have found that African populations contain an exceptionally high frequency of mutations in CD36. Unexpectedly, these mutations that cause CD36 deficiency are associated with susceptibility to severe malaria, suggesting that the presence of distinct CD36 mutations in Africans and Asians is due to some selection pressure other than malaria.


Nature | 2000

Population genetics: Malaria susceptibility and CD36 mutation

Timothy J. Aitman; Lisa D. Cooper; Penny J. Norsworthy; Faisal N. Wahid; Jennefer K. Gray; Brian R. Curtis; Paul McKeigue; Dominic P. Kwiatkowski; Brian Greenwood; Robert W. Snow; Adrian V. S. Hill; James Scott

A critical step in infection by Plasmodium falciparum, the microorganism that causes the most severe form of malaria, is the adhesion of parasitized red blood cells to capillary endothelium. The human protein CD36 is a major receptor for P. falciparum-infected red blood cells and may contribute to the disease by sequestering infected red blood cells and inhibiting the immune response to the parasite. We have found that African populations contain an exceptionally high frequency of mutations in CD36. Unexpectedly, these mutations that cause CD36 deficiency are associated with susceptibility to severe malaria, suggesting that the presence of distinct CD36 mutations in Africans and Asians is due to some selection pressure other than malaria.


Genetics in Medicine | 2013

The use of next-generation sequencing in clinical diagnosis of familial hypercholesterolemia

Jana Vandrovcova; Ellen Thomas; Santosh S. Atanur; Penny J. Norsworthy; Clare Neuwirth; Yvonne Tan; Dalia Kasperaviciute; Jennifer Biggs; Michael Mueller; Anne K. Soutar; Timothy J. Aitman

Purpose:Familial hypercholesterolemia is a common Mendelian disorder associated with early-onset coronary heart disease that can be treated by cholesterol-lowering drugs. The majority of cases in the United Kingdom are currently without a molecular diagnosis, which is partly due to the cost and time associated with standard screening techniques. The main purpose of this study was to test the sensitivity and specificity of two next-generation sequencing protocols for genetic diagnosis of familial hypercholesterolemia.Methods:Libraries were prepared for next-generation sequencing by two target enrichment protocols; one using the SureSelect Target Enrichment System and the other using the PCR-based Access Array platform.Results:In the validation cohort, both protocols showed 100% specificity, whereas the sensitivity for short variant detection was 100% for the SureSelect Target Enrichment and 98% for the Access Array protocol. Large deletions/duplications were only detected using the SureSelect Target Enrichment protocol. In the prospective cohort, the mutation detection rate using the Access Array was highest in patients with clinically definite familial hypercholesterolemia (67%), followed by patients with possible familial hypercholesterolemia (26%).Conclusion:We have shown the potential of target enrichment methods combined with next-generation sequencing for molecular diagnosis of familial hypercholesterolemia. Adopting these assays for patients with suspected familial hypercholesterolemia could improve cost-effectiveness and increase the overall number of patients with a molecular diagnosis.Genet Med 15 12, 948–957.Genetics in Medicine (2013); 15 12, 948–957. doi:10.1038/gim.2013.55


BMC Medical Genetics | 2014

Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing: a population-based study

Penny J. Norsworthy; Jana Vandrovcova; Ellen Thomas; Archie Campbell; Shona M. Kerr; Jennifer Biggs; Anne K. Soutar; Blair H. Smith; Anna F. Dominiczak; David J. Porteous; Andrew D. Morris; Generation Scotland; Timothy J. Aitman

BackgroundFamilial hypercholesterolaemia (FH) is a common Mendelian condition which, untreated, results in premature coronary heart disease. An estimated 88% of FH cases are undiagnosed in the UK. We previously validated a method for FH mutation detection in a lipid clinic population using next generation sequencing (NGS), but this did not address the challenge of identifying index cases in primary care where most undiagnosed patients receive healthcare. Here, we evaluate the targeted use of NGS as a potential route to diagnosis of FH in a primary care population subset selected for hypercholesterolaemia.MethodsWe used microfluidics-based PCR amplification coupled with NGS and multiplex ligation-dependent probe amplification (MLPA) to detect mutations in LDLR, APOB and PCSK9 in three phenotypic groups within the Generation Scotland: Scottish Family Health Study including 193 individuals with high total cholesterol, 232 with moderately high total cholesterol despite cholesterol-lowering therapy, and 192 normocholesterolaemic controls.ResultsPathogenic mutations were found in 2.1% of hypercholesterolaemic individuals, in 2.2% of subjects on cholesterol-lowering therapy and in 42% of their available first-degree relatives. In addition, variants of uncertain clinical significance (VUCS) were detected in 1.4% of the hypercholesterolaemic and cholesterol-lowering therapy groups. No pathogenic variants or VUCS were detected in controls.ConclusionsWe demonstrated that population-based genetic testing using these protocols is able to deliver definitive molecular diagnoses of FH in individuals with high cholesterol or on cholesterol-lowering therapy. The lower cost and labour associated with NGS-based testing may increase the attractiveness of a population-based approach to FH detection compared to genetic testing with conventional sequencing. This could provide one route to increasing the present low percentage of FH cases with a genetic diagnosis.


Experimental Nephrology | 2002

Segregation of experimental autoimmune glomerulonephritis as a complex genetic trait and exclusion of Col4a3 as a candidate gene.

John Reynolds; Paul R. Cook; James J. Ryan; Penny J. Norsworthy; Anne M. Glazier; Mark Duda; David J. Evans; Timothy J. Aitman; Charles D. Pusey

Experimental autoimmune glomerulonephritis (EAG), an animal model of Goodpasture’s disease, can be induced in Wistar-Kyoto (WKY) rats (RT1-l) by immunization with rat glomerular basement membrane (GBM) in adjuvant. The model in this rat strain is characterized by anti-GBM antibody production accompanied by focal necrotizing glomerulonephritis with crescent formation. The main autoantigen in humans and rats has been identified as the non-collagenous domain of the α3 chain of type IV collagen (α3(IV)NC1). By contrast, Lewis (LEW) rats with the same MHC background (RT1-l), immunized with the same antigen, develop similar levels of circulating anti-GBM antibodies, but no histological evidence of nephritis. In order to investigate the genetic basis of susceptibility to EAG, we examined the response of both F1 (WKY × LEW) and backcross (BC1; WKY × F1) rats to immunization with rat GBM. F1 animals were completely resistant to the development of EAG, while BC1 animals showed a range of responses from severe crescentic glomerulonephritis to no histological evidence of disease. The results indicate that EAG is inherited as a complex trait under the control of WKY genes unlinked to the MHC. cDNA sequence analysis of α3(IV)NC1 in the two parental strains was identical, indicating no predicted amino acid sequence variation in the α3(IV)NC1 domain between these strains. Radiation hybrid mapping, using two separate PCR amplicons from rat α3(IV)NC1, localized rat Col4a3 to a region of chromosome 9. Since Col4a3 (encoding the autoantigen) is a candidate for susceptibility to EAG, we screened the region of rat chromosome 9 where Col4a3 is localized, using polymorphic microsatellite markers in segregating BC1 progeny. No significant linkage was detected. These results exclude Col4a3 as a recessive susceptibility gene for EAG in the BC1 progeny.


Molecular Genetics & Genomic Medicine | 2013

Identification and biochemical analysis of a novel APOB mutation that causes autosomal dominant hypercholesterolemia

Ellen Thomas; Santosh S. Atanur; Penny J. Norsworthy; Vesela Encheva; Ambrosius P. Snijders; Jana Vandrovcova; Afshan Siddiq; Mary Seed; Anne K. Soutar; Timothy J. Aitman

Patients with autosomal dominant hypercholesterolemia (ADH) have a high risk of developing cardiovascular disease that can be effectively treated using statin drugs. Molecular diagnosis and family cascade screening is recommended for early identification of individuals at risk, but up to 40% of families have no mutation detected in known genes. This study combined linkage analysis and exome sequencing to identify a novel variant in exon 3 of APOB (Arg50Trp). Mass spectrometry established that low‐density lipoprotein (LDL) containing Arg50Trp APOB accumulates in the circulation of affected individuals, suggesting defective hepatic uptake. Previously reported mutations in APOB causing ADH have been located in exon 26. This is the first report of a mutation outside this region causing this phenotype, therefore, more extensive screening of this large and highly polymorphic gene may be necessary in ADH families. This is now feasible due to the high capacity of recently available sequencing platforms.


Genetics in Medicine | 2016

Targeted next-generation sequencing makes new molecular diagnoses and expands genotype-phenotype relationship in Ehlers-Danlos syndrome.

Ruwan A. Weerakkody; Jana Vandrovcova; Christina Kanonidou; Michael Mueller; Piyush Gampawar; Yousef Ibrahim; Penny J. Norsworthy; Jennifer Biggs; Abdulshakur Abdullah; David Ross; Holly A. Black; David J. P. Ferguson; Nicholas Cheshire; Hanadi Kazkaz; Rodney Grahame; Neeti Ghali; Anthony Vandersteen; F. Michael Pope; Timothy J. Aitman

Purpose:Ehlers–Danlos syndrome (EDS) comprises a group of overlapping hereditary disorders of connective tissue with significant morbidity and mortality, including major vascular complications. We sought to identify the diagnostic utility of a next-generation sequencing (NGS) panel in a mixed EDS cohort.Methods:We developed and applied PCR-based NGS assays for targeted, unbiased sequencing of 12 collagen and aortopathy genes to a cohort of 177 unrelated EDS patients. Variants were scored blind to previous genetic testing and then compared with results of previous Sanger sequencing.Results:Twenty-eight pathogenic variants in COL5A1/2, COL3A1, FBN1, and COL1A1 and four likely pathogenic variants in COL1A1, TGFBR1/2, and SMAD3 were identified by the NGS assays. These included all previously detected single-nucleotide and other short pathogenic variants in these genes, and seven newly detected pathogenic or likely pathogenic variants leading to clinically significant diagnostic revisions. Twenty-two variants of uncertain significance were identified, seven of which were in aortopathy genes and required clinical follow-up.Conclusion:Unbiased NGS-based sequencing made new molecular diagnoses outside the expected EDS genotype–phenotype relationship and identified previously undetected clinically actionable variants in aortopathy susceptibility genes. These data may be of value in guiding future clinical pathways for genetic diagnosis in EDS.Genet Med 18 11, 1119–1127.


PLOS Genetics | 2014

Genetic Analysis of the Cardiac Methylome at Single Nucleotide Resolution in a Model of Human Cardiovascular Disease

Michelle D. Johnson; Michael Mueller; Martyna Adamowicz-Brice; Melissa J. Collins; Pascal Gellert; Klio Maratou; Prashant K. Srivastava; Maxime Rotival; Shahena Butt; Santosh S. Atanur; Nicholas Silver; Penny J. Norsworthy; Sarah R. Langley; Enrico Petretto; Michal Pravenec; Timothy J. Aitman

Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR), a model of cardiovascular disease, and the Brown Norway (BN) control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI) strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB), a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will stimulate further investigation of the molecular basis of locally regulated variation in CpG methylation and provide a starting point for understanding the relationship between the genetic control of CpG methylation and disease phenotypes.

Collaboration


Dive into the Penny J. Norsworthy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Thomas

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Petretto

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge