Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Penny M. Kris-Etherton is active.

Publication


Featured researches published by Penny M. Kris-Etherton.


Circulation | 2002

Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease

Penny M. Kris-Etherton; William S. Harris; Lawrence J. Appel

fatty acids affect cardiac function (including antiarrhythmic effects), hemodynamics (cardiac mechanics), and arterial endothelial function have helped clarify potential mechanisms of action. The present Statement will address distinctions between plant-derived (-linolenic acid, C18:3n-3) and marine-derived (eicosapentaenoic acid, C20:5n-3 [EPA] and docosahexaenoic acid, C22:6n-3 [DHA]) omega-3 fatty acids. (Unless otherwise noted, the term omega-3 fatty acids will refer to the latter.) Evidence from epidemiological studies and RCTs will be reviewed, and recommendations reflecting the current state of knowledge will be made with regard to both fish consumption and omega-3 fatty acid (plant- and marine-derived) supplementation. This will be done in the context of recent guidance issued by the US Environmental Protection Agency and the Food and Drug Administration (FDA) about the presence of environmental contaminants in certain species of fish.


Circulation | 2006

Diet and Lifestyle Recommendations Revision 2006 A Scientific Statement From the American Heart Association Nutrition Committee

Alice H. Lichtenstein; Lawrence J. Appel; Michael W. Brands; Mercedes R. Carnethon; Stephen R. Daniels; Harold A. Franch; Barry A. Franklin; Penny M. Kris-Etherton; William S. Harris; Barbara V. Howard; Njeri Karanja; Michael Lefevre; Lawrence L. Rudel; Frank M. Sacks; M. Linda Van Horn; Mary Winston; Judith Wylie-Rosett

Improving diet and lifestyle is a critical component of the American Heart Association’s strategy for cardiovascular disease risk reduction in the general population. This document presents recommendations designed to meet this objective. Specific goals are to consume an overall healthy diet; aim for a healthy body weight; aim for recommended levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides; aim for normal blood pressure; aim for a normal blood glucose level; be physically active; and avoid use of and exposure to tobacco products. The recommendations are to balance caloric intake and physical activity to achieve and maintain a healthy body weight; consume a diet rich in vegetables and fruits; choose whole-grain, high-fiber foods; consume fish, especially oily fish, at least twice a week; limit intake of saturated fat to <7% of energy, trans fat to <1% of energy, and cholesterol to <300 mg/day by choosing lean meats and vegetable alternatives, fat-free (skim) or low-fat (1% fat) dairy products and minimize intake of partially hydrogenated fats; minimize intake of beverages and foods with added sugars; choose and prepare foods with little or no salt; if you consume alcohol, do so in moderation; and when you eat food prepared outside of the home, follow these Diet and Lifestyle Recommendations. By adhering to these diet and lifestyle recommendations, Americans can substantially reduce their risk of developing cardiovascular disease, which remains the leading cause of morbidity and mortality in the United States.


Circulation | 2011

Effectiveness-Based Guidelines for the Prevention of Cardiovascular Disease in Women—2011 Update: A Guideline From the American Heart Association

Lori Mosca; Emelia J. Benjamin; Kathy Berra; Judy L. Bezanson; Rowena J Dolor; Donald M. Lloyd-Jones; L. Kristin Newby; Ileana L. Piña; Véronique L. Roger; Leslee J. Shaw; Dong Zhao; Theresa M. Beckie; Cheryl Bushnell; Jeanine D'Armiento; Penny M. Kris-Etherton; Jing Fang; Theodore G. Ganiats; Antoinette S. Gomes; Clarisa R. Gracia; Constance K. Haan; Elizabeth A. Jackson; Debra R. Judelson; Ellie Kelepouris; Carl J. Lavie; Anne Moore; Nancy A. Nussmeier; Elizabeth Ofili; Suzanne Oparil; Pamela Ouyang; Vivian W. Pinn

Substantial progress has been made in the awareness, treatment, and prevention of cardiovascular disease (CVD) in women since the first women-specific clinical recommendations for the prevention of CVD were published by the American Heart Association (AHA) in 1999.1 The myth that heart disease is a “mans disease” has been debunked; the rate of public awareness of CVD as the leading cause of death among US women has increased from 30% in 1997 to 54% in 2009.2 The age-adjusted death rate resulting from coronary heart disease (CHD) in females, which accounts for about half of all CVD deaths in women, was 95.7 per 100 000 females in 2007, a third of what it was in 1980.3,4 Approximately 50% of this decline in CHD deaths has been attributed to reducing major risk factors and the other half to treatment of CHD including secondary preventive therapies.4 Major randomized controlled clinical trials such as the Womens Health Initiative have changed the practice of CVD prevention in women over the past decade.5 The investment in combating this major public health issue for women has been significant, as have the scientific and medical achievements. Despite the gains that have been made, considerable challenges remain. In 2007, CVD still caused ≈1 death per minute among women in the United States.6 These represent 421 918 deaths, more womens lives than were claimed by cancer, chronic lower respiratory disease, Alzheimer disease, and accidents combined.6 Reversing a trend of the past 4 decades, CHD death rates in US women 35 to 54 years of age now actually appear to be increasing, likely because of the effects of the obesity epidemic.4 CVD rates in the United States are significantly higher for black females compared with their white counterparts (286.1/100 000 versus …


Circulation | 2011

Triglycerides and Cardiovascular Disease A Scientific Statement From the American Heart Association

Michael I. Miller; Neil J. Stone; Christie M. Ballantyne; Vera Bittner; Michael H. Criqui; Henry N. Ginsberg; Anne C. Goldberg; William James Howard; Marc S. Jacobson; Penny M. Kris-Etherton; Terry A. Lennie; Moshe Levi; Theodore Mazzone; Subramanian Pennathur

A long-standing association exists between elevated triglyceride levels and cardiovascular disease* (CVD).1,2 However, the extent to which triglycerides directly promote CVD or represent a biomarker of risk has been debated for 3 decades.3 To this end, 2 National Institutes of Health consensus conferences evaluated the evidentiary role of triglycerides in cardiovascular risk assessment and provided therapeutic recommendations for hypertriglyceridemic states.4,5 Since 1993, additional insights have been made vis-a-vis the atherogenicity of triglyceride-rich lipoproteins (TRLs; ie, chylomicrons and very low-density lipoproteins), genetic and metabolic regulators of triglyceride metabolism, and classification and treatment of hypertriglyceridemia. It is especially disconcerting that in the United States, mean triglyceride levels have risen since 1976, in concert with the growing epidemic of obesity, insulin resistance (IR), and type 2 diabetes mellitus (T2DM).6,7 In contrast, mean low-density lipoprotein cholesterol (LDL-C) levels have receded.7 Therefore, the purpose of this scientific statement is to update clinicians on the increasingly crucial role of triglycerides in the evaluation and management of CVD risk and highlight approaches aimed at minimizing the adverse public health–related consequences associated with hypertriglyceridemic states. This statement will complement recent American Heart Association scientific statements on childhood and adolescent obesity8 and dietary sugar intake9 by emphasizing effective lifestyle strategies designed to lower triglyceride levels and improve overall cardiometabolic health. It is not intended to serve as a specific guideline but will be of value to the Adult Treatment Panel IV (ATP IV) of the National Cholesterol Education Program, from which evidence-based guidelines will ensue. Topics to be addressed include epidemiology and CVD risk, ethnic and racial differences, metabolic determinants, genetic and family determinants, risk factor correlates, and effects related to nutrition, physical activity, and lipid medications. In the United States, the National Health and …


The American Journal of Clinical Nutrition | 2000

Polyunsaturated fatty acids in the food chain in the United States

Penny M. Kris-Etherton; Denise Shaffer Taylor; Shaomei Yu-Poth; Peter Huth; Kristin Moriarty; Valerie Fishell; Rebecca L Hargrove; Guixiang Zhao; Terry D. Etherton

In the United States, intake of n-3 fatty acids is approximately 1.6 g/d ( approximately 0.7% of energy), of which 1.4 g is alpha-linolenic acid (ALA; 18:3) and 0.1-0.2 g is eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6). The primary sources of ALA are vegetable oils, principally soybean and canola. The predominant sources of EPA and DHA are fish and fish oils. Intake data indicate that the ratio of n-6 to n-3 fatty acids is approximately 9.8:1. Food disappearance data between 1985 and 1994 indicate that the ratio of n-6 to n-3 fatty acids has decreased from 12.4:1 to 10.6:1. This reflects a change in the profile of vegetable oils consumed and, in particular, an approximate 5.5-fold increase in canola oil use. The ratio of n-6 to n-3 fatty acids is still much higher than that recommended (ie, 2.3:1). Lower ratios increase endogenous conversion of ALA to EPA and DHA. Attaining the proposed recommended combined EPA and DHA intake of 0.65 g/d will require an approximately 4-fold increase in fish consumption in the United States. Alternative strategies, such as food enrichment and the use of biotechnology to manipulate the EPA and DHA as well as ALA contents of the food supply, will become increasingly important in increasing n-3 fatty acid intake in the US population.


Circulation | 1998

Primary Prevention of Coronary Heart Disease: Guidance From Framingham A Statement for Healthcare Professionals From the AHA Task Force on Risk Reduction

Scott M. Grundy; Gary J. Balady; Michael H. Criqui; Gerald F. Fletcher; Philip Greenland; Loren F. Hiratzka; Nancy Houston-Miller; Penny M. Kris-Etherton; Harlan M. Krumholz; John C. LaRosa; Ira S. Ockene; Thomas A. Pearson; James Reed; Reginald L. Washington; Sidney C. Smith

The Framingham Heart Study has contributed importantly to understanding of the causes of coronary heart disease (CHD), stroke, and other cardiovascular diseases. Framingham research has helped define the quantitative and additive nature of these causes or, as they are now called, “cardiovascular risk factors.”1 The National Cholesterol Education Program (NCEP)2 3 has made extensive use of Framingham data in developing its strategy for preventing CHD by controlling high cholesterol levels. The NCEP guidelines2 3 adjust the intensity of cholesterol-lowering therapy with absolute risk as determined by summation of risk factors. The National High Blood Pressure Education Program (NHBPEP) has set forth a parallel approach for blood pressure control. In contrast to the NCEP,2 however, earlier NHBPEP reports issued through the Joint National Committee4 did not match the intensity of therapy to absolute risk for CHD. “Normalization” of blood pressure is the essential goal of therapy regardless of risk status. Blood pressure–lowering therapy is carried out as much for prevention of stroke and other cardiovascular complications as for reduction of CHD risk. Nonetheless, risk assessment could be important for making decisions about type and intensity of therapy for hypertension. Thus, the most recent Joint National Committee report5 gives more attention to risk stratification for adjustment of therapy for hypertension. Although Framingham data have already been influential in the development of national guidelines for risk factor management, the opportunity may exist for both cholesterol and blood pressure programs to draw more extensively from Framingham results when formulating improved risk assessment guidelines and recommending more specific strategies for risk factor modification. The American Heart Association has previously used Framingham risk factor data to prepare charts for estimating CHD risk. Framingham investigators of the National Heart, Lung, and Blood Institute prepared the original charts and have now revised …


Circulation | 2009

Omega-6 Fatty Acids and Risk for Cardiovascular Disease A Science Advisory From the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention

William S. Harris; Dariush Mozaffarian; Eric B. Rimm; Penny M. Kris-Etherton; Lawrence L. Rudel; Lawrence J. Appel; Marguerite M. Engler; Mary B. Engler; Frank M. Sacks

A large body of literature suggests that higher intakes of omega-6 (or n-6) polyunsaturated fatty acids (PUFAs) reduce risk for coronary heart disease (CHD). However, for the reasons outlined below, some individuals and groups have recommended substantial reductions in omega-6 PUFA intake.1–4 The purpose of this advisory is to review evidence on the relationship between omega-6 PUFAs and the risk of CHD and cardiovascular disease. Omega-6 PUFAs are characterized by the presence of at least 2 carbon-carbon double bonds, with the first bond at the sixth carbon from the methyl terminus. Linoleic acid (LA), an 18-carbon fatty acid with 2 double bonds (18:2 omega-6), is the primary dietary omega-6 PUFA. LA cannot be synthesized by humans, and although firm minimum requirements have not been established for healthy adults, estimates derived from studies in infants and hospitalized patients receiving total parenteral nutrition suggest that an LA intake of ≈0.5% to 2% of energy is likely to suffice. After consumption, LA can be desaturated and elongated to form other omega-6 PUFAs such as γ-linolenic and dihomo-γ-linolenic acids. The latter is converted to the metabolically important omega-6 PUFA arachidonic acid (AA; 20:4 omega-6), the substrate for a wide array of reactive oxygenated metabolites. Because LA accounts for 85% to 90% of the dietary omega-6 PUFA, this advisory focuses primarily on this fatty acid, recognizing that dietary AA, which can affect tissue AA levels,5 may have physiological sequelae.6–8 LA comes primarily from vegetable oils (eg, corn, sunflower, safflower, soy). The average US intake of LA, according to National Health and Nutrition Examination Survey 2001 to 2002 data for adults ≥19 years of age, is 14.8 g/d.9 On the basis of an average intake of 2000 kcal/d, LA intake is 6.7% of energy. AA (≈0.15 g/d) is consumed preformed in meat, …


Circulation | 2006

Soy Protein, Isoflavones, and Cardiovascular Health An American Heart Association Science Advisory for Professionals From the Nutrition Committee

Frank M. Sacks; Alice H. Lichtenstein; Linda Van Horn; William S. Harris; Penny M. Kris-Etherton; Mary Winston

Soy protein and isoflavones (phytoestrogens) have gained considerable attention for their potential role in improving risk factors for cardiovascular disease. This scientific advisory assesses the more recent work published on soy protein and its component isoflavones. In the majority of 22 randomized trials, isolated soy protein with isoflavones, as compared with milk or other proteins, decreased LDL cholesterol concentrations; the average effect was ≈3%. This reduction is very small relative to the large amount of soy protein tested in these studies, averaging 50 g, about half the usual total daily protein intake. No significant effects on HDL cholesterol, triglycerides, lipoprotein(a), or blood pressure were evident. Among 19 studies of soy isoflavones, the average effect on LDL cholesterol and other lipid risk factors was nil. Soy protein and isoflavones have not been shown to lessen vasomotor symptoms of menopause, and results are mixed with regard to soys ability to slow postmenopausal bone loss. The efficacy and safety of soy isoflavones for preventing or treating cancer of the breast, endometrium, and prostate are not established; evidence from clinical trials is meager and cautionary with regard to a possible adverse effect. For this reason, use of isoflavone supplements in food or pills is not recommended. Thus, earlier research indicating that soy protein has clinically important favorable effects as compared with other proteins has not been confirmed. In contrast, many soy products should be beneficial to cardiovascular and overall health because of their high content of polyunsaturated fats, fiber, vitamins, and minerals and low content of saturated fat.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Omega-3 Fatty Acids and Cardiovascular Disease New Recommendations From the American Heart Association

Penny M. Kris-Etherton; William S. Harris; Lawrence J. Appel

Since the original American Heart Association (AHA) Science Advisory was published in 1996,1 important new findings have been reported about the benefits of omega-3 fatty acids on cardiovascular disease (CVD). Omega-3 fatty acids are obtained from two dietary sources: seafood and certain nut and plant oils. Fish and fish oils contain the 20-carbon eicosapentaenoic acid (EPA) and the 22-carbon docosahexaenoic acid (DHA), whereas canola, walnut, soybean, and flaxseed oils contain the 18-carbon α-linolenic acid (ALA). ALA appears to be less potent than EPA and DHA. The evidence supporting the clinical benefits of omega-3 fatty acids derive from population studies and randomized, controlled trials, and new information has emerged regarding the mechanisms of action of these nutrients. These are outlined in a recent Scientific Statement, “Fish Consumption, Fish Oil, Omega-3 Fatty Acids and Cardiovascular Disease.”2 See page e20 Large-scale epidemiologic studies suggest that people at risk for coronary heart disease (CHD) benefit from consuming omega-3 fatty acids from plants and marine sources. Although the ideal amount to take is not firmly established, evidence from prospective secondary prevention studies suggests that intakes of EPA+DHA ranging from 0.5 …


The American Journal of Clinical Nutrition | 2006

n−3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits

Sarah K Gebauer; Tricia L. Psota; William S. Harris; Penny M. Kris-Etherton

Dietary recommendations have been made for n-3 fatty acids, including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) to achieve nutrient adequacy and to prevent and treat cardiovascular disease. These recommendations are based on a large body of evidence from epidemiologic and controlled clinical studies. The n-3 fatty acid recommendation to achieve nutritional adequacy, defined as the amount necessary to prevent deficiency symptoms, is 0.6-1.2% of energy for ALA; up to 10% of this can be provided by EPA or DHA. To achieve recommended ALA intakes, food sources including flaxseed and flaxseed oil, walnuts and walnut oil, and canola oil are recommended. The evidence base supports a dietary recommendation of approximately 500 mg/d of EPA and DHA for cardiovascular disease risk reduction. For treatment of existing cardiovascular disease, 1 g/d is recommended. These recommendations have been embraced by many health agencies worldwide. A dietary strategy for achieving the 500-mg/d recommendation is to consume 2 fish meals per week (preferably fatty fish). Foods enriched with EPA and DHA or fish oil supplements are a suitable alternate to achieve recommended intakes and may be necessary to achieve intakes of 1 g/d.

Collaboration


Dive into the Penny M. Kris-Etherton's collaboration.

Top Co-Authors

Avatar

Sheila G. West

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jennifer A. Fleming

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Terry D. Etherton

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William S. Harris

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Guixiang Zhao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ann C. Skulas-Ray

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

John P. Vanden Heuvel

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Alison M. Hill

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge