Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Penny Roon is active.

Publication


Featured researches published by Penny Roon.


American Journal of Pathology | 2003

Neuroprotective Effect of(−)Δ9-Tetrahydrocannabinol and Cannabidiol in N-Methyl-d-Aspartate-Induced Retinal Neurotoxicity : Involvement of Peroxynitrite

Azza B. El-Remessy; Ibrahim E. Khalil; Suraporn Matragoon; Gamal Abou-Mohamed; Nai Jer Tsai; Penny Roon; Ruth B. Caldwell; Robert W. Caldwell; Keith Green; Gregory I. Liou

In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death. In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Delta9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation. Excitotoxicity of the retina was induced by intravitreal injection of N-methyl-D-aspartate (NMDA) in rats, which also received 4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl (TEMPOL,a superoxide dismutase-mimetic), N-omega-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor), THC, or CBD. Retinal neuron loss was determined by TDT-mediated dUTP nick-end labeling assay, inner retinal thickness, and quantification of the mRNAs of ganglion cell markers. NMDA induced a dose- and time-dependent accumulation of nitrite/nitrate, lipid peroxidation, and nitrotyrosine (foot print of peroxynitrite), and a dose-dependent apoptosis and loss of inner retinal neurons. Treatment with L-NAME or TEMPOL protected retinal neurons and confirmed the involvement of peroxynitrite in retinal neurotoxicity. The neuroprotection by THC and CBD was because of attenuation of peroxynitrite. The effect of THC was in part mediated by the cannabinoid receptor CB1. These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma.


Investigative Ophthalmology & Visual Science | 2008

In vivo protection against retinal neurodegeneration by sigma receptor 1 ligand (+)-pentazocine.

Sylvia B. Smith; Jennifer Duplantier; Ying Dun; Barbara A. Mysona; Penny Roon; Pamela M. Martin; Vadivel Ganapathy

PURPOSE To evaluate the neuroprotective properties of the sigma receptor 1 (sigmaR1) ligand, (+)-pentazocine in an in vivo model of retinal neurodegeneration. METHODS Spontaneously diabetic Ins2(Akita/+) and wild-type mice received intraperitoneal injections of (+)-pentazocine for 22 weeks beginning at diabetes onset. Retinal mRNA and protein were analyzed by RT-PCR and Western blot analysis. Retinal histologic sections were measured to determine total retinal thickness, thicknesses of inner-outer nuclear and plexiform layers (INL, ONL, IPL, INL), and the number of cell bodies in the ganglion cell layer (GCL). Immunolabeling experiments were performed using antibodies specific for 4-hydroxynonenal and nitrotyrosine, markers of lipid peroxidation, and reactive nitrogen species, respectively, and an antibody specific for vimentin to view radial Müller fibers. RESULTS sigmaR1 mRNA and protein levels in the Ins2(Akita/+) retina were comparable to those in the wild-type, indicating that sigmaR1 is an available target during the disease process. Histologic evaluation of eyes of Ins2(Akita/+) mice showed disruption of retinal architecture. By 17 to 25 weeks after birth, Ins2(Akita/+) mice demonstrated approximately 30% and 25% decreases in IPL and INL thicknesses, respectively, and a 30% reduction in ganglion cells. In the (+)-pentazocine-treated group, retinas of Ins2(Akita/+) mice showed remarkable preservation of retinal architecture; IPL and INL thicknesses of (+)-pentazocine-treated Ins2(Akita/+) mouse retinas were within normal limits. The number of ganglion cells was 15.6 +/- 1.5 versus 10.4 +/- 1.2 cells/100 mum retinal length in (+)-pentazocine-treated versus nontreated mutant mice. Levels of nitrotyrosine and 4-hydroxynonenal increased in Ins2(Akita/+) retinas, but were reduced in (+)-pentazocine-treated mice. Retinas of Ins2(Akita/+) mice showed loss of the uniform organization of radial Müller fibers. Retinas of (+)-pentazocine-treated mice maintained the radial organization of glial processes. CONCLUSION Sustained (+)-pentazocine treatment in an in vivo model of retinal degeneration conferred significant neuroprotection, reduced evidence of oxidative stress, and preserved retinal architecture, suggesting that sigmaR1 ligands are promising therapeutic agents for intervention in neurodegenerative diseases of the retina.


Pharmaceutical Research | 2007

Transport of Nicotinate and Structurally Related Compounds by Human SMCT1 (SLC5A8) and Its Relevance to Drug Transport in the Mammalian Intestinal Tract

Elangovan Gopal; Seiji Miyauchi; Pamela M. Martin; Sudha Ananth; Penny Roon; Sylvia B. Smith; Vadivel Ganapathy

PurposeTo examine the involvement of human SMCT1, a Na+-coupled transporter for short-chain fatty acids, in the transport of nicotinate/structural analogs and monocarboxylate drugs, and to analyze its expression in mouse intestinal tract.Materials and MethodsWe expressed human SMCT1 in X. laevis oocytes and monitored its function by [14C]nicotinate uptake and substrate-induced inward currents. SMCT1 expression in mouse intestinal tract was examined by immunofluorescence.Results[14C]Nicotinate uptake was several-fold higher in SMCT1-expressing oocytes than in water-injected oocytes. The uptake was inhibited by short-chain/medium-chain fatty acids and various structural analogs of nicotinate. Exposure of SMCT1-expressing oocytes to nicotinate induced Na+-dependent inward currents. Measurements of nicotinate flux and associated charge transfer into oocytes suggest a Na+:nicotinate stoichiometry of 2:1. Monocarboxylate drugs benzoate, salicylate, and 5-aminosalicylate are also transported by human SMCT1. The transporter is expressed in the small intestine as well as colon, and the expression is restricted to the lumen-facing apical membrane of intestinal and colonic epithelial cells.ConclusionsHuman SMCT1 transports not only nicotinate and its structural analogs but also various monocarboxylate drugs. The transporter is expressed on the luminal membrane of the epithelial cells lining the intestinal tract. SMCT1 may participate in the intestinal absorption of monocarboxylate drugs.


Molecular Brain Research | 2001

Expression pattern of sigma receptor 1 mRNA and protein in mammalian retina.

M. Shamsul Ola; Pamela J. Moore; Amira El-Sherbeny; Penny Roon; Neeraj Agarwal; Vijay P. Sarthy; Pierre Casellas; Vadivel Ganapathy; Sylvia B. Smith

Sigma receptors are nonopiate and nonphencyclidine binding sites that are thought to be neuroprotective due to modulation of N-methyl-D-aspartate (NMDA) receptors. Sigma receptor 1 expression has been demonstrated in numerous tissues including brain. Recently, studies using binding assays have demonstrated sigma receptor 1 in neural retina, however these studies did not demonstrate in which retinal cell type(s) sigma receptor 1 was present nor did they establish unequivocally the molecular identity of the receptor. The present study was designed to address these issues. Reverse transcription-polymerase chain reaction (RT-PCR) analysis amplified sigma receptor 1 in neural retina, RPE-choroid complex, and lens isolated from mice. A similar RT-PCR product was amplified also in three cultured cell lines, rat Müller cells, rat ganglion cells and human ARPE-19 cells. In situ hybridization analysis revealed abundant sigma receptor 1 expression in ganglion cells, cells of the inner nuclear layer, inner segments of photoreceptor cells and retinal pigment epithelial (RPE) cells. Immunohistochemical studies detected the sigma receptor 1 protein in retinal ganglion, photoreceptor, RPE cells and surrounding the soma of cells in the inner nuclear layer. These data provide the first cellular localization of sigma receptor 1 in neural retina and establish the molecular identity of sigma receptor 1 in retinal cells. The demonstration that sigma receptor 1 is present in ganglion cells is particularly noteworthy given the well-documented susceptibility of these cells to glutamate toxicity. Our findings suggest that retinal ganglion cells may be amenable to the neuroprotective effects of sigma ligands under conditions of neurotoxicity such as occurs in diabetes.


Biochemical Journal | 2008

Hepcidin expression in mouse retina and its regulation via lipopolysaccharide/Toll-like receptor-4 pathway independent of Hfe

Jaya P. Gnana-Prakasam; Pamela M. Martin; Barbara A. Mysona; Penny Roon; Sylvia B. Smith; Vadivel Ganapathy

Hepcidin is a hormone central to the regulation of iron homeostasis in the body. It is believed to be produced exclusively by the liver. Ferroportin, an iron exporter, is the receptor for hepcidin. This transporter/receptor is expressed in Müller cells, photoreceptor cells and the RPE (retinal pigment epithelium) within the retina. Since the retina is protected by the retinal-blood barriers, we asked whether ferroportin in the retina is regulated by hepcidin in the circulation or whether the retina produces hepcidin for regulation of its own iron homeostasis. Here we show that hepcidin is expressed robustly in Müller cells, photoreceptor cells and RPE cells, closely resembling the expression pattern of ferroportin. We also show that bacterial LPS (lipopolysaccharide) is a regulator of hepcidin expression in Müller cells and the RPE, both in vitro and in vivo, and that the regulation occurs at the transcriptional level. The action of LPS on hepcidin expression is mediated by the TLR4 (Toll-like receptor-4). The upregulation of hepcidin by LPS occurs independent of Hfe (human leukocyte antigen-like protein involved in Fe homeostasis). The increase in hepcidin levels in retinal cells in response to LPS treatment is associated with a decrease in ferroportin levels. The LPS-induced upregulation of hepcidin and consequent down-regulation of ferroportin is associated with increased oxidative stress and apoptosis within the retina in vivo. We conclude that retinal iron homeostasis may be regulated in an autonomous manner by hepcidin generated within the retina and that chronic bacterial infection/inflammation of the retina may disrupt iron homeostasis and retinal function.


BMC Developmental Biology | 2003

Reduced-folate carrier (RFC) is expressed in placenta and yolk sac, as well as in cells of the developing forebrain, hindbrain, neural tube, craniofacial region, eye, limb buds and heart

Dennis M. Maddox; Anna Manlapat; Penny Roon; Puttur D. Prasad; Vadivel Ganapathy; Sylvia B. Smith

BackgroundFolate is essential for cellular proliferation and tissue regeneration. As mammalian cells cannot synthesize folates de novo, tightly regulated cellular uptake processes have evolved to sustain sufficient levels of intracellular tetrahydrofolate cofactors to support biosynthesis of purines, pyrimidines, and some amino acids (serine, methionine). Though reduced-folate carrier (RFC) is one of the major proteins mediating folate transport, knowledge of the developmental expression of RFC is lacking. We utilized in situ hybridization and immunolocalization to determine the developmental distribution of RFC message and protein, respectively.ResultsIn the mouse, RFC transcripts and protein are expressed in the E10.0 placenta and yolk sac. In the E9.0 to E11.5 mouse embryo RFC is widely detectable, with intense signal localized to cell populations in the neural tube, craniofacial region, limb buds and heart. During early development, RFC is expressed throughout the eye, but by E12.5, RFC protein becomes localized to the retinal pigment epithelium (RPE).ConclusionsClinical studies show a statistical decrease in the number of neural tube defects, craniofacial abnormalities, cardiovascular defects and limb abnormalities detected in offspring of female patients given supplementary folate during pregnancy. The mechanism, however, by which folate supplementation ameliorates the occurrence of developmental defects is unclear. The present work demonstrates that RFC is present in placenta and yolk sac and provides the first evidence that it is expressed in the neural tube, craniofacial region, limb buds and heart during organogenesis. These findings suggest that rapidly dividing cells in the developing neural tube, craniofacial region, limb buds and heart may be particularly susceptible to folate deficiency.


Investigative Ophthalmology & Visual Science | 2009

Endogenous Elevation of Homocysteine Induces Retinal Neuron Death in the Cystathionine-β-Synthase Mutant Mouse

Preethi S. Ganapathy; Brent Moister; Penny Roon; Barbara A. Mysona; Jennifer Duplantier; Ying Dun; Tracy K.V.E. Moister; Marlena J. Farley; Puttur D. Prasad; Kebin Liu; Sylvia B. Smith

PURPOSE To determine the effects of endogenous elevation of homocysteine on the retina using the cystathionine beta-synthase (cbs) mutant mouse. METHODS Retinal homocysteine in cbs mutant mice was measured by high-performance liquid chromatography (HPLC). Retinal cryosections from cbs(-/-) mice and cbs(+/-) mice were examined for histologic changes by light and electron microscopy. Morphometric analysis was performed on retinas of cbs(+/-) mice maintained on a high-methionine diet (cbs(+/-) HM). Changes in retinal gene expression were screened by microarray. RESULTS HPLC analysis revealed an approximate twofold elevation in retinal homocysteine in cbs(+/-) mice and an approximate sevenfold elevation in cbs(-/-) mice. Distinct alterations in the ganglion, inner plexiform, inner nuclear, and epithelial layers were observed in retinas of cbs(-/-) and 1-year-old cbs(+/-) mice. Retinas of cbs(+/-) HM mice demonstrated an approximate 20% decrease in cells of the ganglion cell layer (GCL), which occurred as early as 5-weeks after onset of the HM diet. Microarray analysis revealed alterations in expression of several genes, including increased expression of Aven, Egr1, and Bat3 in retinas of cbs(+/-) HM mice. CONCLUSIONS This study provides the first analysis of morphologic and molecular effects of endogenous elevations of retinal homocysteine in an in vivo model. Increased retinal homocysteine alters inner and outer retinal layers in cbs homozygous mice and older cbs heterozygous mice, and it primarily affects the cells of the GCL in younger heterozygous mice. Elevated retinal homocysteine alters expression of genes involved in endoplasmic reticular stress, N-methyl-d-aspartate (NMDA) receptor activation, cell cycle, and apoptosis.


Journal of Neurochemistry | 2008

Serine racemase expression and d-serine content are developmentally regulated in neuronal ganglion cells of the retina

Ying Dun; Jennifer Duplantier; Penny Roon; Pamela M. Martin; Vadivel Ganapathy; Sylvia B. Smith

d‐Serine, the endogenous ligand for the glycine modulatory binding site of the NMDA receptor, and serine racemase, the enzyme that converts l‐serine to d‐serine, have been reported in vertebrate retina; initial reports suggested that localization was restricted to Müller glial cells. Recent reports, in which d‐serine and serine racemase were detected in neurons of the brain, prompted the present investigation of neuronal expression of d‐serine and serine racemase in retina and whether expression patterns were developmentally regulated. RT‐PCR, in situ hybridization, western blotting, immunohistochemistry, and immunocytochemical methods were used to localize d‐serine and serine racemase in intact retina obtained from 1 to 3 day, 3 week, and 18 week mouse retinas and in primary ganglion cells harvested by immunopanning from neonatal mouse retina. Results of these analyses revealed robust expression of d‐serine and serine racemase in ganglion cells, both in intact retina and in cultured cells. The levels appear to be developmentally regulated with d‐serine levels being quite high in ganglion cells of neonatal retinas and decreasing rapidly postnatally. Serine racemase levels are also developmentally regulated, with high levels detected during the early postnatal period, but diminishing considerably in the mature retina. This represents the first report of neuronal expression of d‐serine and serine racemase in the vertebrate retina and suggests an important contribution of neuronal d‐serine during retinal development.


Molecular Brain Research | 2002

Analysis of Sigma Receptor (σR1) expression in retinal ganglion cells cultured under hyperglycemic conditions and in diabetic mice

M. Shamsul Ola; Pamela J. Moore; Dennis M. Maddox; Amira El-Sherbeny; Wei Huang; Penny Roon; Neeraj Agarwal; Vadivel Ganapathy; Sylvia B. Smith

The type 1 sigma receptor (sigmaR1) is a nonopiate and nonphencyclidine binding site that has numerous pharmacological and physiological functions. In some studies, agonists for sigmaR1 have been shown to afford neuroprotection against overstimulation of the NMDA receptor. sigmaR1 expression has been demonstrated recently in retinal ganglion cells (RGC). RGCs undergo apoptosis early in diabetic retinopathy via NMDA receptor overstimulation. In the present study we asked whether RGCs cultured under hyperglycemic conditions and RGCs of diabetic mice continue to express sigmaR1. RGCs were cultured 48 h in RPMI medium containing either 45 mM glucose or 11 mM glucose plus 34 mM mannitol (osmolar control). C57BL/6 mice were made diabetic using streptozotocin. The retina was dissected from normal and streptozotocin-induced diabetic mice 3, 6 and 12 weeks post-onset of diabetes. sigmaR1 was analyzed in cells using semiquantitative RT-PCR and in tissues by semiquantitative RT-PCR, in situ hybridization, Western blot analysis and immunolocalization. The RT-PCR analysis of cultured RGCs showed that sigmaR1 mRNA is expressed under hyperglycemic conditions at levels similar to control cells. Similarly, analysis of retinas of diabetic mice showed no difference in levels of mRNA encoding sigmaR1 compared to retinas of control mice. In situ hybridization analysis showed that expression patterns of sigmaR1 mRNA in the ganglion cell layer were similar between diabetic and control mice. Western blot analysis suggested that levels of sigmaR1 in retina were similar between diabetic and control retinas. Immunohistochemical analysis of sigmaR1 showed a similar pattern of sigmaR1 protein expression between control and diabetic retina. These studies demonstrate that sigmaR1 is expressed under hyperglycemic conditions in vitro and in vivo.


Investigative Ophthalmology & Visual Science | 2011

Homocysteine-Mediated Modulation of Mitochondrial Dynamics in Retinal Ganglion Cells

Preethi S. Ganapathy; Richard L. Perry; Amany Tawfik; Robert M. Smith; Elizabeth Perry; Penny Roon; B. Renee Bozard; Yonju Ha; Sylvia B. Smith

PURPOSE To evaluate the effect of excess homocysteine on the regulation of retinal ganglion cell mitochondrial dynamics. METHODS Mice deficient in cystathionine-β-synthase (cbs) were used as a model of hyperhomocysteinemia. Gene and protein expression analyses of Opa1 and Fis1 were performed on cbs⁺/⁻ neural retinas. Mitochondria within retinal ganglion cell axons underwent systematic ultrastructural analysis to measure area, length, width, and the distance between the mitochondria and the axon wall. Primary mouse ganglion cells were cultured, treated with homocysteine, and assessed for levels of Opa1 and Fis1 protein, the number of mitochondria per length of neurite, and levels of cleaved caspase-3. RESULTS Opa1 and Fis1 protein levels in cbs⁺/⁻ neural retinas were elevated to 191.00% ± 26.40% and 226.20% ± 4.57%, respectively, compared with wild-type. Mitochondria of cbs⁺/⁻ retinas were smaller in all parameters studied, including area (0.32 ± 0.01 μm² vs. 0.42 ± 0.02 μm²), compared with wild-type. Primary ganglion cells treated with homocysteine had elevations in Opa1 and Fis1 proteins, a significantly higher number of mitochondria per length of neurite (0.1781 ± 0.017 vs. 0.1156 ± 0.012), and significantly higher levels of cleaved caspase-3 compared with control. CONCLUSIONS This study provides the first evidence that homocysteine-induced ganglion cell loss involves the dysregulation of mitochondrial dynamics, both in vivo and in vitro. The present data suggest increased mitochondrial fission as a novel mechanism of homocysteine toxicity to neurons. Of particular relevance are glaucoma and Alzheimers disease, neurodegenerative diseases that are associated with hyperhomocysteinemia and, more recently, have implicated increased mitochondrial fission in their pathogeneses.

Collaboration


Dive into the Penny Roon's collaboration.

Top Co-Authors

Avatar

Sylvia B. Smith

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Vadivel Ganapathy

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Pamela M. Martin

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Barbara A. Mysona

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Puttur D. Prasad

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

V. Ganapathy

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Ying Dun

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Wang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge