Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Penny Soucy is active.

Publication


Featured researches published by Penny Soucy.


Cancer Epidemiology, Biomarkers & Prevention | 2017

The OncoArray Consortium: a Network for Understanding the Genetic Architecture of Common Cancers.

Christopher I. Amos; Joe Dennis; Zhaoming Wang; Jinyoung Byun; Fredrick R. Schumacher; Simon A. Gayther; Graham Casey; David J. Hunter; Thomas A. Sellers; Stephen B. Gruber; Alison M. Dunning; Kyriaki Michailidou; Laura Fachal; Kimberly F. Doheny; Amanda B. Spurdle; Yafang Li; Xiangjun Xiao; Jane Romm; Elizabeth W. Pugh; Gerhard A. Coetzee; Dennis J. Hazelett; Stig E. Bojesen; Charlisse F. Caga-anan; Christopher A. Haiman; Ahsan Kamal; Craig Luccarini; Daniel C. Tessier; Daniel Vincent; Francois Bacot; David Van Den Berg

Background: Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. Methods: The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. Results: The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Conclusions: Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. Impact: Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126–35. ©2016 AACR.


BMC Cancer | 2006

Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovarian cancer families

Francine Durocher; Yvan Labrie; Penny Soucy; Olga M. Sinilnikova; Damian Labuda; Paul Bessette; Jocelyne Chiquette; Rachel Laframboise; Jean-Pierre Lépine; Bernard Lespérance; Geneviève Ouellette; Roxane Pichette; Marie Plante; Sean V. Tavtigian; Jacques Simard

BackgroundAtaxia telangiectasia-mutated and Rad3-related (ATR) is a member of the PIK-related family which plays, along with ATM, a central role in cell-cycle regulation. ATR has been shown to phosphorylate several tumor suppressors like BRCA1, CHEK1 and TP53. ATR appears as a good candidate breast cancer susceptibility gene and the current study was designed to screen for ATR germline mutations potentially involved in breast cancer predisposition.MethodsATR direct sequencing was performed using a fluorescent method while widely available programs were used for linkage disequilibrium (LD), haplotype analyses, and tagging SNP (tSNP) identification. Expression analyses were carried out using real-time PCR.ResultsThe complete sequence of all exons and flanking intronic sequences were analyzed in DNA samples from 54 individuals affected with breast cancer from non-BRCA1/2 high-risk French Canadian breast/ovarian families. Although no germline mutation has been identified in the coding region, we identified 41 sequence variants, including 16 coding variants, 3 of which are not reported in public databases. SNP haplotypes were established and tSNPs were identified in 73 healthy unrelated French Canadians, providing a valuable tool for further association studies involving the ATR gene, using large cohorts. Our analyses led to the identification of two novel alternative splice transcripts. In contrast to the transcript generated by an alternative splicing site in the intron 41, the one resulting from a deletion of 121 nucleotides in exon 33 is widely expressed, at significant but relatively low levels, in both normal and tumoral cells including normal breast and ovarian tissue.ConclusionAlthough no deleterious mutations were identified in the ATR gene, the current study provides an haplotype analysis of the ATR gene polymorphisms, which allowed the identification of a set of SNPs that could be used as tSNPs for large-scale association studies. In addition, our study led to the characterization of a novel Δ33 splice form, which could generate a putative truncated protein lacking several functional domains. Additional studies in large cohorts and other populations will be needed to further evaluate if common and/or rare ATR sequence variants can be associated with a modest or intermediate breast cancer risk.


The Journal of Steroid Biochemistry and Molecular Biology | 2001

Comparative biosynthetic pathway of androstenol and androgens.

Isabelle Dufort; Penny Soucy; Lucille Lacoste; Van Luu-The

It has been shown recently that androstenol and androstanol could modulate gene expression through the nuclear orphan receptors CAR (constitutive androstane receptor) and PXR (pregnane X receptor). Although, in the pig, androstenol is produced in high amounts and is active as a pheromone, its role in the human is ill defined. Androstenol possesses a structure similar to that of androgens, with the exception that it does not possess an oxygen at position 17 that is crucial for androgenic and estrogenic activity. It has been shown that human and boar testis homogenates could produce androstenol, but details of the biosynthetic pathway had not yet been elucidated. It has also been shown recently that androstenol could modulate the activity of CAR and PXR and the expression of some cytochrome P450 drug-metabolizing enzymes. We wanted to determine the precise biosynthetic pathway of androstenol and other closely related steroids. Using transformed human embryonic kidney (HEK-293) cells that stably express 3 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase, we have shown that these enzymes are able to efficiently transform the precursor 5,16-androstadien-3 beta-ol into androstenol. We thus provided evidence that androstenol, the ligand for CAR and PXR, is produced by the biosynthetic pathway of sex steroids.


Breast Cancer Research | 2013

COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration

Melissa C. Southey; Daniel J. Park; Tú Nguyen-Dumont; Ian G. Campbell; Ella R. Thompson; Alison H. Trainer; Georgia Chenevix-Trench; Jacques Simard; Martine Dumont; Penny Soucy; Mads Thomassen; Lars Jønson; Inge Søkilde Pedersen; Thomas V O Hansen; Heli Nevanlinna; Sofia Khan; Olga M. Sinilnikova; Sylvie Mazoyer; Fabienne Lesueur; Francesca Damiola; Rita K. Schmutzler; Alfons Meindl; Eric Hahnen; Michael R. Dufault; T. L. Chris Chan; Ava Kwong; Rosa B. Barkardottir; Paolo Radice; Paolo Peterlongo; Peter Devilee

Linkage analysis, positional cloning, candidate gene mutation scanning and genome-wide association study approaches have all contributed significantly to our understanding of the underlying genetic architecture of breast cancer. Taken together, these approaches have identified genetic variation that explains approximately 30% of the overall familial risk of breast cancer, implying that more, and likely rarer, genetic susceptibility alleles remain to be discovered.


The Journal of Steroid Biochemistry and Molecular Biology | 2002

Assessment of the ability of type 2 cytochrome b5 to modulate 17,20-lyase activity of human P450c17

Penny Soucy; Van Luu-The

The 17 alpha-hydroxylase and 17,20-lyase activities of P450c17 lead to the production of 17 alpha-hydroxypregnenolone (17 alpha-OH-Preg) and dehydroepiandrosterone (DHEA), respectively, in different tissues. The mechanisms of differential regulation of these two activities are not yet fully elucidated. It has been previously shown that cytochrome b5 (cyt-b5) could facilitate the 17,20-lyase activity of human P450c17. Recently, a cDNA (type 2 cyt-b5) sharing 45.8% homology with type 1 cyt-b5 has been isolated from human testis. Since high 17,20-lyase activity is required for the production of androgens in the testis, we wanted to determine the importance of this second cDNA in the modulation of P450c17 17,20-lyase activity and hence, its role in the formation of active androgens. We therefore isolated type 2 cyt-b5 from human testis by RT-PCR and analyzed, by transient transfection in transformed human embryonic kidney cells (HEK-293) of various amounts of vectors expressing cyt-b5, P450-reductase and P450c17, its ability to modulate the 17,20-lyase activity of human P450c17. Results show that, in the presence of NADPH cytochrome P450 reductase (P450-red), type 2 cyt-b5 increases 17,20-lyase activity to a level comparable to that of type 1. These results support the idea that types 1 and 2 cyt-b5 could be involved in the differential modulation of 17 alpha-hydroxylase and 17,20-lyase activities of P450c17. Furthermore, the analysis of mRNA expression of types 1 and 2 cyt-b5 by RT-PCR using primers specific to each type showed that both types are present in the liver but also in the adrenal and testis.


The Journal of Steroid Biochemistry and Molecular Biology | 2003

Characterization and modulation of sex steroid metabolizing activity in normal human keratinocytes in primary culture and HaCaT cells

Sébastien Gingras; Carl Turgeon; Nancy Brochu; Penny Soucy; Fernand Labrie; Jacques Simard

Skin, the largest organ of the human body, synthesizes active sex steroids from adrenal C19 precursor steroids. Normal human breast epidermal keratinocytes in primary culture were used to evaluate the enzymatic activities responsible for the formation and degradation of active androgens and estrogens during keratinocyte differentiation. Enzymatic activities, including 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD), 17beta-hydroxysteroid dehydrogenase (17beta-HSD), 5alpha-reductase and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) were measured using [3H] steroids as substrates. After 10-60 days in culture, no 3beta-HSD activity was detected, but all other activities were measured, demonstrating the ability of keratinocytes to convert androstenedione (4-DIONE) into the potent androgen dihydrotestosterone (DHT). Furthermore, marked changes in enzymatic activity were observed during cell differentiation: 17beta-HSD was first detected during the third week of culture, the level of activity reaching a peak during the fourth week. This peak was followed by a progressive decrease during keratinization. On the other hand, 5alpha-reductase and 3alpha-HSD activities were first detected during the fourth week of culture. The enzymatic activities involved in the formation and degradation of sex steroids were also characterized in the immortalized human keratinocyte cell line HaCaT. It was then found that HaCaT cells possess a pattern of steroid metabolizing enzymes similar to that of human epidermal keratinocytes in culture. Since glucocorticoids are known to exert potent pharmacological effects on the skin, the effect of dexamethasone (DEX) on cell proliferation and enzymatic activities was determined using HaCaT cells. DEX causes a 55% decrease in HaCaT cell proliferation (IC50: 10nM) whereas DEX caused a three- to five-fold stimulation of oxidative 17beta-HSD activity in intact cells in culture (ED50: 30 nM) and this stimulatory effect was competitively blocked by the glucocorticoid antagonist RU486. A four-fold increase in type 2 17beta-HSD mRNA levels was also observed as measured by real-time PCR, correlating with the increase in oxidative activity. No effect of DEX on the other enzymatic activities (3beta-HSD, 5alpha-reductase, and 3alpha-HSD) was observed. Since increased levels of inflammatory cytokines have been detected in some skin diseases then these cytokines might play a role in the differentiation of keratinocytes. In this regard, we found that interleukin-4 (IL-4) induced the expression of 3beta-HSD in HaCaT cells, thus allowing the cells to produce a different set of sex steroids from adrenal C19 precursors. The present data thus indicate that HaCaT cells are a useful model to further study the regulation of the enzymes involved in the metabolism of sex steroids in keratinocytes.


Journal of the National Cancer Institute | 2017

Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers

Karoline B. Kuchenbaecker; Lesley McGuffog; Daniel Barrowdale; Andrew Lee; Penny Soucy; Joe Dennis; Susan M. Domchek; Mark E. Robson; Amanda B. Spurdle; Susan J. Ramus; Nasim Mavaddat; Mary Beth Terry; Susan L. Neuhausen; Rita K. Schmutzler; Jacques Simard; Paul Pharoah; Kenneth Offit; Fergus J. Couch; Georgia Chenevix-Trench; Douglas F. Easton; Antonis C. Antoniou

Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]–positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2×10−53). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2×10−20). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management.


Cytogenetic and Genome Research | 1999

Assignment1 of HSD17B5 encoding type 5 17 beta-hydroxysteroid dehydrogenase to human chromosome bands 10p15→p14 and mouse chromosome 13 region A2 by in situ hybridization: Identification of a new syntenic relationship

P. Rheault; Isabelle Dufort; Penny Soucy; Van Luu-The

The 17ß-hydroxysteroid dehydrogenases (17ß-HSD) catalyze the oxidation and reduction of 17ß-hydroxy and 17-ketosteroids (Luu-The et al., 1995). They thus play a critical role in the control of active sex steroids levels, namely estradiol, testosterone and dihydrotestosterone in target tissues. In human, five types of 17ß-HSD have been described (Luu-The et al., 1990; Wu et al., 1993; Geissler et al., 1994; Adamski et al., 1995; Dufort et al., 1999). Impairment of type 3 17ß-HSD leads to pseudohermaphroditism (Geissler et al., 1994). In contrast to types 1, 2, 3 and 4 17ß-HSDs that belong to the short chain alcohol dehydrogenase family, human type 5 17ß-HSD belongs to the aldoketo reductase family that includes 3·-HSD and 20·-HSD which share approximately 80% amino acid sequence identity (Dufort et al., 1999). Using cDNA encoding type 1 3·-HSD as probe, a cluster containing several genes of this family was mapped to chromosome 10p15→p14 (Khanna et al., 1995). HSD17B1, HSD17B2, HSD17B3 and HSD17B4 have been mapped to human chromosome bands 17q21, 16q24, 9q22 and 5q2, respectively. To localize more specifically type 5 17ß-HSD genes, we used 8-kb and 5-kb DNA fragments of the human and mouse type 5 17ß-HSD genes, respectively, as probes to perform fluorescence in situ hybridization on human and mouse chromosomes. The human type 5 17ßHSD gene (HSD17B5) mapped to the same chromosome bands 10p15→p14 as the cluster, whereas the mouse type 5 17ß-HSD gene (Hsd17b5) is located at chromosome 13 region A2. The results thus reveal a new syntenic relationship between human and mouse chromosomes.


The Journal of Steroid Biochemistry and Molecular Biology | 2009

Analysis of 17β-hydroxysteroid dehydrogenase types 5, 7, and 12 genetic sequence variants in breast cancer cases from French Canadian Families with high risk of breast and ovarian cancer

Marie Plourde; Alexandra Ferland; Penny Soucy; Yosr Hamdi; Martine Tranchant; Francine Durocher; Olga M. Sinilnikova; Jacques Simard

A family history and estrogen exposure are well-known risk factors for breast cancer. Members of the 17beta-hydroxysteroid dehydrogenase family are responsible for important steps in the metabolism of androgens and estrogens in peripheral tissues, including the mammary gland. The crucial biological function of 17beta-HSDs renders these genes good candidates for being involved in breast cancer etiology. This study screened for mutations in HSD17B7 and HSD17B12 genes, which encode enzymes involved in estradiol biosynthesis and in AKR1C3, which codes for 17beta-HSD type 5 enzyme involved in androgen and progesterone metabolism, to assess whether high penetrance allelic variants in these genes could be involved in breast cancer susceptibility. Mutation screening of 50 breast cancer cases from non-BRCA1/2 high-risk French Canadian families failed to identify germline likely high-risk mutations in HSD17B7, HSD17B12 and AKR1C3 genes. However, 107 sequence variants were identified, including seven missense variants. Assessment of the impact of missense variants on enzymatic activity of the corresponding enzymes revealed no difference in catalytic properties between variants of 17beta-HSD types 7 and 12 and wild-type enzymes, while variants p.Glu77Gly and p.Lys183Arg in 17beta-HSD type 5 showed a slightly decreased activity. Finally, a haplotype-based approach was used to determine tagging SNPs providing valuable information for studies investigating associations of common variants in these genes with breast cancer risk.


Oncotarget | 2016

Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21

Yosr Hamdi; Penny Soucy; Véronique Adoue; Kyriaki Michailidou; Sander Canisius; Audrey Lemaçon; Arnaud Droit; Irene L. Andrulis; Hoda Anton-Culver; Volker Arndt; Caroline Baynes; Carl Blomqvist; Natalia Bogdanova; Stig E. Bojesen; Manjeet K. Bolla; Bernardo Bonanni; Anne Lise Børresen-Dale; Judith S. Brand; Hiltrud Brauch; Hermann Brenner; Annegien Broeks; Barbara Burwinkel; Jenny Chang-Claude; Fergus J. Couch; Angela Cox; Simon S. Cross; Kamila Czene; Hatef Darabi; Joe Dennis; Peter Devilee

There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.

Collaboration


Dive into the Penny Soucy's collaboration.

Top Co-Authors

Avatar

Jacques Simard

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joe Dennis

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga M. Sinilnikova

International Agency for Research on Cancer

View shared research outputs
Researchain Logo
Decentralizing Knowledge