Per C. Saether
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Per C. Saether.
Journal of Immunology | 2003
Sigurd E. Hoelsbrekken; Øyvind Nylenna; Per C. Saether; Imer Ö. Slettedal; James C. Ryan; Sigbjørn Fossum; Erik Dissen
We report the molecular cloning of a KIR3DL1 receptor in the mouse and the rat, between 37.4 and 45.4% identical with primate killer cell Ig-like receptors (KIRs/CD158). Both mouse and rat molecules contain a pair of immunoreceptor tyrosine-based inhibition motifs in their cytoplasmic regions, suggesting an inhibitory function. Southern blot analysis indicated a single KIR gene in the rat, whereas the mouse genome contains more than one KIR-related element. The rat Kir3dl1 locus was mapped to the leukocyte receptor gene complex on chromosome 1, whereas mouse Kir3dl1 was localized to the X chromosome. RT-PCR demonstrated that KIR3DL1 was selectively expressed by NK cells in both rat and mouse. An epitope-tagged expression construct of mouse KIR3DL1 transfected into 293T cells induced expression of a ∼55-kDa protein. Our data indicate that KIR receptors may contribute to the NK cell receptor repertoire in rodents, alongside the Ly-49 family.
European Journal of Immunology | 2013
Ana Lobato‐Pascual; Per C. Saether; Sigbjørn Fossum; Erik Dissen; Michael R. Daws
Upon receptor activation, the myeloid C‐type lectin receptor Mincle signals via the Syk‐CARD9‐Bcl10‐MALT1 pathway. It does so by recruiting the ITAM‐bearing FcεRI‐γ. The related receptor macrophage C‐type Lectin (MCL) has also been shown to be associated with Syk and to be dependent upon this signaling axis. We have previously shown that MCL co‐precipitates with FcεRI‐γ, but were unable to show a direct association, suggesting that MCL associates with FcεRI‐γ via another molecule. Here, we have used rat primary cells and cell lines to investigate this missing link. A combination of flow cytometric and biochemical analysis showed that Mincle and MCL form heteromers on the cell surface. Furthermore, association with MCL and FcεRI‐γ increased Mincle expression and enhanced phagocytosis of Ab‐coated beads. The results presented in this paper suggest that the Mincle/MCL/FcεRI‐γ complex is the functionally optimal form for these C‐type lectin receptors on the surface of myeloid cells.
Immunogenetics | 2010
Line Mari Flornes; Øyvind Nylenna; Per C. Saether; Michael R. Daws; Erik Dissen; Sigbjørn Fossum
The natural killer cell gene complex (NKC) encodes receptors belonging to the C-type lectin superfamily expressed primarily by NK cells and other leukocytes. In the rat, the chromosomal region that starts with the Nkrp1a locus and ends with the Ly49i8 locus is predicted to contain 67 group V C-type lectin superfamily genes, making it one of the largest congregation of paralogous genes in vertebrates. Based on physical proximity and phylogenetic relationships between these genes, the rat NKC can be divided into four major parts. We have previously reported the cDNA cloning of the majority of the genes belonging to the centromeric Nkrp1/Clr cluster and the two telomeric groups, the Klre1–Klri2 and the Ly49 clusters. Here, we close the gap between the Nkrp1/Clr and the Klre1–Klri2 clusters by presenting the cDNA cloning and transcription patterns of eight genes spanning from Cd69 to Dectin1, including the novel Clec2m gene. The definition, organization, and evolution of the rat NKC are discussed.
PLOS ONE | 2013
Ana Lobato‐Pascual; Per C. Saether; Maria K. Dahle; Peter Gaustad; Erik Dissen; Sigbjørn Fossum; Michael R. Daws
Macrophage C-type lectin (MCL) is a membrane surface receptor encoded by the Antigen Presenting Lectin-like gene Complex (APLEC). We generated a mouse monoclonal antibody for the study of this receptor in the rat. We demonstrate that rat MCL is expressed on blood monocytes and neutrophils, as well as on several tissue macrophage populations, including alveolar and peritoneal cavity macrophages. We also demonstrate MCL expression on a subset of resident spleen macrophages. Immunohistochemistry analysis of the spleen showed staining specifically in the marginal zone and red pulp. Exposure to pro-inflammatory mediators or to yeast cell wall extract (zymosan) increased surface MCL expression on peritoneal macrophages. We characterized a rat myeloid cell line, RMW, which expresses high levels of MCL. We found that MCL co-immunoprecipitated with the activating adaptor protein FcεRIγ in these cells. Moreover, beads coated with anti-MCL antibody increased phagocytosis in the RMW cells. Together, these observations indicate that rat MCL is a receptor that activates phagocytosis in myeloid cells under inflammatory conditions.
Journal of Immunology | 2008
Per C. Saether; Ingunn H. Westgaard; Sigurd E. Hoelsbrekken; Jonathan Benjamin; Lewis L. Lanier; Sigbjørn Fossum; Erik Dissen
NK cells identify infected, neoplastic, or MHC-disparate target cells via several different receptors. The NK cell receptor KLRE1 lacks known signaling motifs but has nevertheless been shown to regulate NK cell-mediated cytotoxicity. Here we demonstrate that KLRE1 forms functional heterodimers with either KLRI1 or KLRI2. Cotransfection with KLRE1 was necessary for surface expression of the NK cell receptor chains KLRI1 and KLRI2 in 293T cells. Moreover, KLRE1 can be coimmunoprecipitated with KLRI1 or KLRI2 from transfected NK cell lines. By flow cytometry, KLRE1 and KLRI1 showed colinear expression on NK cells, suggesting surface expression as heterodimers. Unlike other killer cell lectin-like receptors, KLRE1/KLRI1 and KLRE1/KLRI2 heterodimers predominantly migrated as single chains in SDS-PAGE, indicating noncovalent association. KLRI1 was coimmunoprecipitated with the tyrosine phosphatase Src homology region 2 domain-containing phosphatase 1. In accordance with an inhibitory function, anti-HA Ab induced reduced killing of FcR-bearing targets by KLRI1-HA-transfected NK cell lines in a redirected cytotoxicity assay. Reciprocally, KLRI2-HA transfectants displayed increased killing in this assay. Finally, Ab to KLRE1 induced inhibition in KLRI1-transfected cells but increased cytotoxicity in KLRI2 transfectants, demonstrating that KLRE/I1 is a functional inhibitory heterodimer in NK cells, whereas KLRE/I2 is an activating heterodimeric receptor.
Seminars in Immunology | 2008
Erik Dissen; Sigbjørn Fossum; Sigurd E. Hoelsbrekken; Per C. Saether
Natural killer (NK) cells discriminate between normal syngeneic cells and infected, neoplastic or MHC-disparate allogeneic cells. The reactivity of NK cells appears to be regulated by a balance between activating receptors that recognize non-self or altered self, and inhibitory receptors recognizing normal, self-encoded MHC class I molecules. Subfamilies of NK receptors undergo rapid evolution, and appear to co-evolve with the MHC. We here review present views on the evolution and function of NK cell receptors, with an emphasis on knowledge gained in cattle and rodents.
Immunogenetics | 2011
Sigbjørn Fossum; Per C. Saether; John T. Vaage; Michael R. Daws; Erik Dissen
Some leukocyte receptors come in groups of two or more where the partners share ligand(s) but transmit opposite signals. Some of the ligands, such as MHC class I, are fast evolving, raising the problem of how paired opposing receptors manage to change in step with respect to ligand binding properties and at the same time conserve opposite signaling functions. An example is the KLRC (NKG2) family, where opposing variants have been conserved in both rodents and primates. Phylogenetic analyses of the KLRC receptors within and between the two orders show that the opposing partners have been subject to post-speciation gene homogenization restricted mainly to the parts of the genes that encode the ligand binding domains. Concerted evolution similarly restricted is demonstrated also for the KLRI, KLRB (NKR-P1), KLRA (Ly49), and PIR receptor families. We propose the term merohomogenization for this phenomenon and discuss its significance for the evolution of immune receptors.
Journal of Immunology | 2011
Per C. Saether; Sigurd E. Hoelsbrekken; Sigbjørn Fossum; Erik Dissen
Signaling by the CD94/NKG2 heterodimeric NK cell receptor family has been well characterized in the human but has remained unclear in the mouse and rat. In the human, the activating receptor CD94/NKG2C associates with DAP12 by an ionic bond between oppositely charged residues within the transmembrane regions of NKG2C and DAP12. The lysine residue responsible for DAP12 association is absent in rat and mouse NKG2C and -E, raising questions about signaling mechanisms in these species. As a possible substitute, rat and mouse NKG2C and -E contain an arginine residue in the transition between the transmembrane and stalk regions. In this article, we demonstrate that, similar to their human orthologs, NKG2A inhibits, whereas NKG2C activates, rat NK cells. Redirected lysis assays using NK cells transfected with a mutated NKG2C construct indicated that the activating function of CD94/NKG2C did not depend on the transmembrane/stalk region arginine residue. Flow cytometry and biochemical analysis demonstrated that both DAP12 and DAP10 can associate with rat CD94/NKG2C. Surprisingly, DAP12 and DAP10 did not associate with NKG2C but instead with CD94. These associations depended on a transmembrane lysine residue in CD94 that is unique to rodents. Thus, in the mouse and rat, the ability to bind activating adaptor proteins has been transferred from NKG2C/E to the CD94 chain as a result of mutation events in both chains. Remarkable from a phylogenetic perspective, this sheds new light on the evolution and function of the CD94/NKG2 receptor family.
Journal of Immunology | 2017
Lavanya Thiruchelvam-Kyle; Sigurd E. Hoelsbrekken; Per C. Saether; Elisabeth Gyllensten Bjørnsen; Daniela Pende; Sigbjørn Fossum; Michael R. Daws; Erik Dissen
The functions of activating members of the killer cell Ig-like receptor (KIR) family are not fully understood, as the ligands for these receptors are largely unidentified. In this study, we report that KIR2DS2 reporter cells recognize a ligand expressed by cancer cell lines. All cancer targets recognized by KIR2DS2 were also recognized by KIR2DL2 and KIR2DL3 reporters. Trogocytosis of membrane proteins from the cancer targets was observed with responding reporter cells, indicating the formation of KIR2DS2 ligand–specific immunological synapses. HLA-C typing of target cells showed that KIR2DS2 recognition was independent of the HLA C1 or C2 group, whereas targets cells that were only recognized by KIR2DL3 expressed C1 group alleles. Anti–HLA class I Abs blocked KIR2DL3 responses toward C1-expressing targets, but they did not block KIR2DS2 recognition of cancer cells. Small interfering RNA knockdown of β2-microglobulin reduced the expression of class I H chain on the cancer targets by >97%, but it did not reduce the KIR2DS2 reporter responses, indicating a β2-microglobulin–independent ligand for KIR2DS2. Importantly, KIR2DL3 responses toward some KIR2DS2 ligand–expressing cells were also undiminished after β2-microglobulin knockdown, and they were not blocked by anti–HLA class I Abs, suggesting that KIR2DL3, in addition to the traditional HLA-C ligands, can bind to the same β2-microglobulin–independent ligand as KIR2DS2. These observations indicate the existence of a novel, presently uncharacterized ligand for the activating NK cell receptor KIR2DS2. Molecular identification of this ligand may lead to improved KIR-HLA mismatching in hematopoietic stem cell transplantation therapy for leukemia and new, more specific NK cell–based cancer therapies.
Hypertension | 2016
Michaela Golic; Nadine Haase; Florian Herse; Anika Wehner; Lisbeth Vercruysse; Robert Pijnenborg; András Balogh; Per C. Saether; Erik Dissen; Friedrich C. Luft; Lukasz Przybyl; Joon-Keun Park; Patji Alnæs-Katjavivi; Anne Cathrine Staff; Stefan Verlohren; Wolfgang Henrich; Dominik Müller; Ralf Dechend
Uterine natural killer cells are important for uteroplacental development and pregnancy maintenance. Their role in pregnancy disorders, such as preeclampsia, is unknown. We reduced the number of natural killer cells by administering rabbit anti-asialo GM1 antiserum in an established rat preeclamptic model (female human angiotensinogen×male human renin) and evaluated the effects at the end of pregnancy (day 21), compared with preeclamptic control rats receiving normal rabbit serum. In 100% of the antiserum-treated, preeclamptic rats (7/7), we observed highly degenerated vessel cross sections in the mesometrial triangle at the end of pregnancy. This maternal uterine vasculopathy was characterized by a total absence of nucleated/living cells in the vessel wall and perivascularly and prominent presence of fibrosis. Furthermore, there were no endovascular trophoblast cells within the vessel lumen. In the control, normal rabbit serum–treated, preeclamptic rats, only 20% (1/5) of the animals displayed such vasculopathy. We confirmed the results in healthy pregnant wild-type rats: after anti-asialo GM1 treatment, 67% of maternal rats displayed vasculopathy at the end of pregnancy compared with 0% in rabbit serum–treated control rats. This vasculopathy was associated with a significantly lower fetal weight in wild-type rats and deterioration of fetal brain/liver weight ratio in preeclamptic rats. Anti-asialo GM1 application had no influence on maternal hypertension and albuminuria during pregnancy. Our results show a new role of natural killer cells during hypertensive pregnancy in maintaining vascular integrity. In normotensive pregnancy, this integrity seems important for fetal growth.