Per Gardeström
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Per Gardeström.
Plant Physiology | 2003
Rupali Bhalerao; Johanna Keskitalo; Fredrik Sterky; Harry Björkbacka; Simon Jonsson Birve; Jan Karlsson; Per Gardeström; Petter Gustafsson; Joakim Lundeberg; Stefan Jansson
Two cDNA libraries were prepared, one from leaves of a field-grown aspen (Populus tremula) tree, harvested just before any visible sign of leaf senescence in the autumn, and one from young but fully expanded leaves of greenhouse-grown aspen (Populus tremula × tremuloides). Expressed sequence tags (ESTs; 5,128 and 4,841, respectively) were obtained from the two libraries. A semiautomatic method of annotation and functional classification of the ESTs, according to a modified Munich Institute of Protein Sequences classification scheme, was developed, utilizing information from three different databases. The patterns of gene expression in the two libraries were strikingly different. In the autumn leaf library, ESTs encoding metallothionein, early light-inducible proteins, and cysteine proteases were most abundant. Clones encoding other proteases and proteins involved in respiration and breakdown of lipids and pigments, as well as stress-related genes, were also well represented. We identified homologs to many known senescence-associated genes, as well as seven different genes encoding cysteine proteases, two encoding aspartic proteases, five encoding metallothioneins, and 35 additional genes that were up-regulated in autumn leaves. We also indirectly estimated the rate of plastid protein synthesis in the autumn leaves to be less that 10% of that in young leaves.
Plant Physiology | 1995
Vaughan Hurry; Åsa Strand; Maria Tobiaeson; Per Gardeström; Gunnar Öquist
The effect of long-term (months) exposure to low temperature (5[deg]C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a 2-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allow these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserve to support basal metabolism and regrowth in the spring.
Plant Physiology | 2005
Johanna Keskitalo; Gustaf Bergquist; Per Gardeström; Stefan Jansson
We have studied autumn leaf senescence in a free-growing aspen (Populus tremula) by following changes in pigment, metabolite and nutrient content, photosynthesis, and cell and organelle integrity. The senescence process started on September 11, 2003, apparently initiated solely by the photoperiod, and progressed steadily without any obvious influence of other environmental signals. For example, after this date, senescing leaves accumulated anthocyanins in response to conditions inducing photooxidative stress, but at the beginning of September the leaves did not. Degradation of leaf constituents took place over an 18-d period, and, although the cells in each leaf did not all senesce in parallel, senescence in the tree as a whole was synchronous. Lutein and β-carotene were degraded in parallel with chlorophyll, whereas neoxanthin and the xanthophyll cycle pigments were retained longer. Chloroplasts in each cell were rapidly converted to gerontoplasts and many, although not all, cells died. From September 19, when chlorophyll levels had dropped by 50%, mitochondrial respiration provided the energy for nutrient remobilization. Remobilization seemed to stop on September 29, probably due to the cessation of phloem transport, but, up to abscission of the last leaves (over 1 week later), some cells were metabolically active and had chlorophyll-containing gerontoplasts. About 80% of the nitrogen and phosphorus was remobilized, and on September 29 a sudden change occurred in the δ15n of the cellular content, indicating that volatile compounds may have been released.
Plant Journal | 1997
Åsa Strand; Vaughan Hurry; Petter Gustafsson; Per Gardeström
Arabidopsis thaliana plants were grown at 23 degrees C and changes in carbohydrate metabolism, photosynthesis and photosynthetic gene expression were studied after the plants were shifted to 5 degrees C. The responses of leaves shifted to 5 degrees C after development at 23 degrees C are compared to leaves that developed at 5 degrees C. Shifting warm developed leaves to 5 degrees C lead to a severe suppression of photosynthesis that correlated with a rapid and sustained accumulation of hexose phosphates and soluble sugars. Associated with the suppression of photosynthesis and the accumulation of soluble sugars was a reduction in the amount of transcript for genes encoding photosynthetic proteins (cab and rbcS). In contrast, leaves that developed at 5 degrees C showed an increase in photosynthesis and control levels of photosynthetic gene expression. This recovery occurred even though leaves that developed at 5 degrees C maintained large pools of soluble sugars. Leaves that developed at 5 degrees C also showed a strong upregulation of the cytosolic pathway for soluble sugar synthesis but not of the chloroplastic pathway for starch synthesis. This was shown at the level of both enzyme activity and the amount of transcript. Thus, development of Arabidopsis leaves at 5 degrees C resulted in metabolic changes that enabled them to produce and accumulate large soluble sugar pools without any associated suppression of photosynthesis or photosynthetic gene expression. These changes were also associated with enhanced freezing tolerance. We suggest that this reprogramming of carbohydrate metabolism associated with development at low temperature is essential to the development of full freezing tolerance and for winter survival of over-wintering herbaceous annuals.
Plant Physiology | 1994
Vaughan Hurry; Gunilla Malmberg; Per Gardeström; Gunnar Öquist
The effect of a short-term (hours) shift to low temperature (5[deg]C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer). Cold-hardened plants grown at 5[deg]C exhibited 25% higher in situ CO2 exchange rates than nonhardened plants grown at 24[deg]C. Cold-hardened plants maintained these high rates throughout the day, in contrast to nonhardened plants, which showed a gradual decline in photosynthesis after 3 h. Associated with the increase in photosynthetic capacity following cold hardening was an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity and 3- to 4-fold increases in the pools of associated metabolites. Leaves of nonhardened plants shifted overnight to 5[deg]C required 9 h in the light at 5[deg]C before maximum rates of photosynthesis were reached. The gradual increase in photosynthesis in leaves shifted to 5[deg]C was correlated with a sharp decline in the 3-phosphoglycerate/triose phosphate ratio and by an increase in the ribulose bisphosphate/3-phosphoglycerate ratio, indicating the gradual easing of aninorganic phosphate-mediated feedback inhibition on photo-synthesis. We suggest that the strong recovery of photosynthesis in winter rye following cold hardening indicates that the buildup of photosynthetic enzymes, as well as those involved in sucrose synthesis, is an adaptive response that enables these plants to maximize the production of sugars that have both cryoprotective and storage functions that are critical to the performance of these cultivars during over-wintering.
Plant Physiology | 2010
Tiago Tomaz; Matthieu Bagard; Itsara Pracharoenwattana; Pernilla Lindén; Chun Pong Lee; Adam J. Carroll; Elke Ströher; Steven M. Smith; Per Gardeström; A. Harvey Millar
Malate dehydrogenase (MDH) catalyzes a reversible NAD+-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO2 assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO2 assimilation/intercellular CO2 curves at low CO2, and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms linking respiration and photosynthesis in plants.
Archive | 2000
Owen K. Atkin; A. H. Millar; Per Gardeström; David A. Day
The relationships between photosynthesis, carbohydrate metabolism and respiration in leaves of C3 plants are reviewed. We first provide an overview of how mitochondrial respiration relies on, and responds to, the supply of photosynthetic products in the light. The pathways by which the various substrates (glycine, oxaloacetate, malate and/or pyruvate) enter the mitochondria and are oxidized, are discussed. We also provide an overview of the pathways of mitochondrial electron transport, with particular attention being paid to the non-phosphorylating alternative oxidase (AOX). We then discuss what is known about leaf respiration rates in light versus darkness (both O2 consumption and CO2 release). The extent to which mitochondrial O2 consumption continues in the light is highly variable, being inhibited, not affected or even stimulated in various reports. On the other hand, non-photorespiratory mitochondrial CO2 release (R) is invariably inhibited by light (5–80% inhibition). R is sensitive to the lowest irradiance values, and is inhibited rapidly. Three methods via which R in the light is measured are outlined and mechanisms via which light might inhibit R are discussed. The effect that light to dark transitions have on respiration are also discussed: we distinguish the initial, photorespiratory post-illumination burst (PIB) from the post-illumination rise in respiration (LEDR, light-enhanced-dark-respiration) which occurs following the PIB. The chapter also considers the demand for mitochondrially-derived ATP for photosynthesis and carbohydrate metabolism and the potential role of respiration during over-reduction of the chloroplast is highlighted. Mitochondrial respiration appears to be critical for the provision of ATP necessary for energy demanding processes in the light. Moreover, there is growing evidence that respiration helps a plant cope with excess photosynthetic redox equivalents, which otherwise can result in photo-oxidative stress.
Plant Physiology | 1993
Silke Krömer; Gunilla Malmberg; Per Gardeström
An oligomycin concentration that specifically inhibits oxidative phosphorylation was added to isolated barley (Hordeum vulgare L.) leaf protoplasts at various irradiances and carbon dioxide concentrations. At saturating as well as low light intensities, photosynthetic oxygen evolution was decreased as a result of the oligomycin treatment, whereas no effect was observed at intermediate light intensities. This was the same for photorespiratory and nonphotorespiratory conditions. These results were confirmed by measurements of fluorescence quenching under the same conditions. Metabolite analysis in the presence of oligomycin revealed a drastic decrease in the mitochondrial and cytosolic ATP/ADP ratios, whereas there was little or no effect on the chloroplastic ratio. Concomitantly, sucrose phosphate synthase activity was reduced. Under high irradiances, this inhibition of sucrose synthesis by oligomycin apparently caused a feedback inhibition on the Calvin cycle and the photosynthetic activity. Under low irradiances, a feedback regulation compensated, indicating that light was more limiting than the activity of regulative enzymes. Thus, the importance of mitochondrial respiratory activity might be different in different metabolic situations. At saturating light, the oxidation of excess photosynthetic redox equivalents is required to sustain a high rate of photosynthesis. At low light, the supply of ATP to the cytosol might be required to support biosynthetic reactions.
Planta | 1995
Vaughan Hurry; Olav Keerberg; Tiit Pärnik; Per Gardeström; Gunnar Öquist
Light- and CO2-saturated photosynthesis of nonhardened rye (Secale cereale L. cv. Musketeer) was reduced from 18.10 to 7.17 μmol O2·m−2·s−1 when leaves were transferred from 20 to 5°C for 30 min. Following cold-hardening at 5°C for ten weeks, photosynthesis recovered to 15.05 μmol O2·m−2·s−1,comparable to the nonhardened rate at 20°C. Recovery of photosynthesis was associated with increases in the total activity and activation of enzymes of the photosynthetic carbon-reduction cycle and of sucrose synthesis. The total hexose-phosphate pool increase by 30% and 120% for nonhardened and cold-hardened leaves respectively when measured at 5°C. The large increase in esterified phosphate in coldhardened leaves occurred without a limitation in inorganic phosphate supply. In contrast, the much smaller increase in esterified phosphate in nonhardened leaves was associated with an inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose-phosphate synthase activation. It is suggested that the large increases in hexose phosphates in cold-hardened leaves compensates for the higher substrate threshold concentrations needed for enzyme activation at low temperatures. High substrate concentrations could also compensate for the kinetic limitations imposed by product inhibition from the accumulation of sucrose at 5°C. Nonhardened leaves appear to be unable to compensate in this fashion due to an inadequate supply of inorganic phosphate.
FEBS Letters | 1997
Abir U. Igamberdiev; Natalia V. Bykova; Per Gardeström
Metabolism of glycine in isolated mitochondria and protoplasts was investigated in photosynthetic, etiolated (barley and pea leaves) and fat‐storing (maize scutellum) tissues using methods of [1‐14C]glycine incorporation and counting of 14CO2 evolved, oxymetric measurement of glycine oxidation and rapid fractionation of protoplasts incubated in photorespiratory conditions with consequent determination of ATP/ADP ratios in different cell compartments. The involvement of different paths of electron transport in mitochondria during operation of glycine decarboxylase complex (GDC) was tested in different conditions, using aminoacetonitrile (AAN), the inhibitor of glycine oxidation in mitochondria, rotenone, the inhibitor of Complex I of mitochondrial electron transport, and inhibitors of cytochrome oxidase and alternative oxidase. It was shown that glycine has a preference to other substrates oxidized in mitochondria only in photosynthetic tissue where succinate and malate even stimulated its oxidation. Rotenone had no or small effect on glycine oxidation, whereas the role of cyanide‐resistant path increased in the presence of ATP. Glycine oxidation increased ATP/ADP ratio in cytosol of barley protoplasts incubated in the presence of CO2, but not in the CO2‐free medium indicating that in conditions of high photorespiratory flux oxidation of NADH formed in the GDC reaction passes via the non‐coupled paths. Activity of GDC in fat‐storing tissue correlated with the activity of glyoxylate‐cycle enzymes, glycine oxidation did not reveal preference to other substrates and the involvement of paths non‐connected with proton translocation was not pronounced. It is suggested that the preference of glycine to other substrates oxidized in mitochondria is achieved in photosynthetic tissue by switching to rotenone‐insensitive intramitochrondrial NADH oxidation and by increasing of alternative oxidase involvement in the presence of glycine.