Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Per-Henrik Groop is active.

Publication


Featured researches published by Per-Henrik Groop.


Diabetes | 2009

The Presence and Severity of Chronic Kidney Disease Predicts All-Cause Mortality in Type 1 Diabetes

Per-Henrik Groop; Merlin C. Thomas; John Moran; Johan Wadén; Lena M. Thorn; Ville Petteri Mäkinen; Milla Rosengård-Bärlund; Markku Saraheimo; Kustaa Hietala; Outi Heikkilä; Carol Forsblom

OBJECTIVES This study aimed to identify clinical features associated with premature mortality in a large contemporary cohort of adults with type 1 diabetes. RESEARCH DESIGN AND METHODS The Finnish Diabetic Nephropathy (FinnDiane) study is a national multicenter prospective follow-up study of 4,201 adults with type 1 diabetes from 21 university and central hospitals, 33 district hospitals, and 26 primary health care centers across Finland. RESULTS During a median 7 years of follow-up, there were 291 deaths (7%), 3.6-fold (95% CI 3.2–4.0) more than that observed in the age- and sex-matched general population. Excess mortality was only observed in individuals with chronic kidney disease. Individuals with normoalbuminuria showed no excess mortality beyond the general population (standardized mortality ratio [SMR] 0.8, 95% CI 0.5–1.1), independent of the duration of diabetes. The presence of microalbuminuria, macroalbuminuria, and end-stage kidney disease was associated with 2.8, 9.2, and 18.3 times higher SMR, respectively. The increase in mortality across each stage of albuminuria was equivalent to the risk conferred by preexisting macrovascular disease. In addition, the glomerular filtration rate was independently associated with mortality, such that individuals with impaired kidney function, as well as those demonstrating hyperfiltration, had an increased risk of death. CONCLUSIONS An independent graded association was observed between the presence and severity of kidney disease and mortality in a large contemporary cohort of individuals with type 1 diabetes. These findings highlight the clinical and public health importance of chronic kidney disease and its prevention in the management of type 1 diabetes.


Diabetologia | 1993

Insulin resistance, hypertension and microalbuminuria in patients with Type 2 (non-insulin-dependent) diabetes mellitus

Leif Groop; Agneta Ekstrand; Carol Forsblom; Elisabeth Widen; Per-Henrik Groop; A. M. Teppo; Johan G. Eriksson

SummaryWe examined the impact of hypertension and microalbuminuria on insulin sensitivity in patients with Type 2 (non-insulin-dependent) diabetes mellitus using the euglycaemic insulin clamp technique in 52 Type 2 diabetic patients and in 19 healthy control subjects. Twenty-five diabetic patients had hypertension and 19 had microalbuminuria. Hypertension per se was associated with a 27% reduction in the rate of total glucose metabolism and a 40% reduction in the rate of non-oxidative glucose metabolism compared with normotensive Type 2 diabetic patients (both p<0.001). Glucose metabolism was also impaired in normotensive microalbuminuric patients compared with normotensive normoalbuminuric patients (29.4±2.2 vs 40.5±2.8 μmol · kg lean body mass−1 · min−1; p=0.012), primarily due to a reduction in non-oxidative glucose metabolism (12.7±2.9 vs 21.1±2.6 μmol · kg lean body mass−1 ·min−1; p=0.06). In a factorial ANOVA design, however, only hypertension (p=0.008) and the combination of hypertension and microalbuminuria (p=0.030) were significantly associated with the rate of glucose metabolism. The highest triglyceride and lowest HDL cholesterol concentrations were observed in Type 2 diabetic patients with both hypertension and microalbuminuria. Of note, glucose metabolism was indistinguishable from that in control subjects in Type 2 diabetic patients without hypertension and microalbuminuria (40.5±2.8 vs 44.4±2.8 μmol · kg lean body mass−1 · min−1). We conclude that insulin resistance in Type 2 diabetes is predominantly associated with either hypertension or microalbuminuria or with both.


Circulation | 1996

Chronic Hyperglycemia Impairs Endothelial Function and Insulin Sensitivity Via Different Mechanisms in Insulin-Dependent Diabetes Mellitus

Sari Mäkimattila; Antti Virkamäki; Per-Henrik Groop; Cockcroft J; Fagerudd J; Hannele Yki-Järvinen

BACKGROUND We explored whether chronic hyperglycemia is associated with defects in endothelium-dependent vasodilatation in vivo and whether defects in the hemodynamic effects of insulin explain insulin resistance. METHODS AND RESULTS Vasodilator responses to brachial artery infusions of acetylcholine, sodium nitroprusside, and NG-monomethyl-L-arginine and, on another occasion, in vivo insulin sensitivity (euglycemic insulin clamp combined with the forearm catheterization technique) were determined in 18 patients with insulin-dependent diabetes mellitus (IDDM) and 9 normal subjects. At identical glucose and insulin levels, insulin stimulation of whole-body and forearm glucose uptake was 57% reduced in the IDDM patients compared with normal subjects (P < .001). The defect in forearm glucose uptake was attributable to a defect in glucose extraction (glucose AV difference, 1.1 +/- 0.2 versus 1.9 +/- 0.2 mmol/L, P < .001, IDDM versus normal subjects), not blood flow. Within the group of IDDM patients, hemoglobin A1c was inversely correlated with forearm blood flow during administration of acetylcholine (r = -.50, P < .02) but not sodium nitroprusside (r = .07). The ratio of endothelium-dependent to endothelium-independent blood flow was approximately 40% lower in patients with poor glycemic control than in normal subjects or patients with good or moderate glycemic control. CONCLUSIONS We conclude that chronic hyperglycemia is associated with impaired endothelium-dependent vasodilatation in vivo and with a glucose extraction defect during insulin stimulation. These data imply that chronic hyperglycemia impairs vascular function and insulin action via distinct mechanisms. The defect in endothelium-dependent vasodilatation could contribute to the increased cardiovascular risk in diabetes.


Diabetologia | 2003

Temporal changes in the frequencies of HLA genotypes in patients with Type 1 diabetes—indication of an increased environmental pressure?

Robert Hermann; Mikael Knip; Riitta Veijola; Olli Simell; A.P. Laine; Hans K. Åkerblom; Per-Henrik Groop; Carol Forsblom; K. Pettersson-Fernholm; Jorma Ilonen

Aims/hypothesisThe incidence of Type 1 diabetes has increased 2.5 times during the time period from 1966 to 2000 in Finland—a general trend seen in almost all developed countries that can only be explained by environmental factors. The aim of this study was to test the possible effect of a changing environment on distribution of genotypes associated with disease susceptibility.MethodsHLA DRB1-DQA1-DQB1 genes and two diabetes-associated polymorphisms at IDDM2 and IDDM12 were analyzed. The frequencies of genotypes were compared between cases diagnosed with childhood-onset Type 1 diabetes during the period of 1939–1965 (n=367) and those diagnosed between 1990 and 2001 (n=736). Chi-square statistics or the Fishers Exact test were used for the comparison of frequencies of analyzed haplotypes and genotypes in the two groups.ResultsThe frequencies of (DR3)-DQA1*05-DQB1*02 and (DR4)-DQB1*0302 risk haplotypes and the high risk (DR3)-DQA1*05-DQB1*02/DRB1*0401-DQB1*0302 genotype were higher while proportion of patients carrying protective haplotypes—(DR15)-DQB1*0602 and (DR1301)-DQB1*0603—or protective genotypes was lower in patients diagnosed before 1965 as compared to those who developed disease after 1990. No temporal variation was found in the frequencies of genotypes at IDDM2 and IDDM12.Conclusion/interpretationOur data suggest that the need for genetic susceptibility to develop Type 1 diabetes has decreased over time due to an increasing environmental pressure and this results in a higher disease progression rate especially in subjects with protective HLA genotypes.


Diabetes Care | 2011

Bacterial Endotoxin Activity in Human Serum Is Associated With Dyslipidemia, Insulin Resistance, Obesity, and Chronic Inflammation

Mariann I. Lassenius; Kirsi H. Pietiläinen; Kati Kaartinen; Pirkko J. Pussinen; Jaana Syrjänen; Carol Forsblom; Ilkka Pörsti; Aila Rissanen; Jaakko Kaprio; Jukka Mustonen; Per-Henrik Groop; Mika Lehto

OBJECTIVE To investigate whether bacterial lipopolysaccharide (LPS) activity in human serum is associated with the components of the metabolic syndrome (MetS) in type 1 diabetic patients with various degrees of kidney disease and patients with IgA glomerulonephritis (IgAGN). RESEARCH DESIGN AND METHODS Serum LPS activity was determined with the Limulus Amoebocyte Lysate chromogenic end point assay in type 1 diabetic patients with a normal albumin excretion rate (n = 587), microalbuminuria (n = 144), macroalbuminuria (n = 173); patients with IgAGN (n = 98); and in nondiabetic control subjects (n = 345). The relationships of the LPS/HDL ratio and MetS-associated variables were evaluated with Pearson correlation. RESULTS The MetS was more prevalent in type 1 diabetic patients (48%) than in patients with IgAGN (15%). Diabetic patients with macroalbuminuria had a significantly higher serum LPS/HDL ratio than patients with IgAGN. In the normoalbuminuric type 1 diabetic group, patients in the highest LPS/HDL quartile were diagnosed as having the MetS three times more frequently than patients in the lowest quartile (69 vs. 22%; P < 0.001). High LPS activity was associated with higher serum triglyceride concentration, earlier onset of diabetes, increased diastolic blood pressure, and elevated urinary excretion of monocyte chemoattractant protein-1. CONCLUSIONS High serum LPS activity is strongly associated with the components of the MetS. Diabetic patients with kidney disease seem to be more susceptible to metabolic endotoxemia than patients with IgAGN. Bacterial endotoxins may thus play an important role in the development of the metabolic and vascular abnormalities commonly seen in obesity and diabetes-related diseases.


Journal of The American Society of Nephrology | 2013

Metabolomics Reveals Signature of Mitochondrial Dysfunction in Diabetic Kidney Disease

Kumar Sharma; Bethany Karl; Anna V. Mathew; Jon A. Gangoiti; Christina L. Wassel; Rintaro Saito; Minya Pu; Shoba Sharma; Young Hyun You; Lin Wang; Maggie K. Diamond-Stanic; Maja T. Lindenmeyer; Carol Forsblom; Wei Wu; Joachim H. Ix; Trey Ideker; Jeffrey B. Kopp; Sanjay K. Nigam; Clemens D. Cohen; Per-Henrik Groop; Bruce Barshop; Loki Natarajan; William L. Nyhan; Robert K. Naviaux

Diabetic kidney disease is the leading cause of ESRD, but few biomarkers of diabetic kidney disease are available. This study used gas chromatography-mass spectrometry to quantify 94 urine metabolites in screening and validation cohorts of patients with diabetes mellitus (DM) and CKD(DM+CKD), in patients with DM without CKD (DM-CKD), and in healthy controls. Compared with levels in healthy controls, 13 metabolites were significantly reduced in the DM+CKD cohorts (P≤0.001), and 12 of the 13 remained significant when compared with the DM-CKD cohort. Many of the differentially expressed metabolites were water-soluble organic anions. Notably, organic anion transporter-1 (OAT1) knockout mice expressed a similar pattern of reduced levels of urinary organic acids, and human kidney tissue from patients with diabetic nephropathy demonstrated lower gene expression of OAT1 and OAT3. Analysis of bioinformatics data indicated that 12 of the 13 differentially expressed metabolites are linked to mitochondrial metabolism and suggested global suppression of mitochondrial activity in diabetic kidney disease. Supporting this analysis, human diabetic kidney sections expressed less mitochondrial protein, urine exosomes from patients with diabetes and CKD had less mitochondrial DNA, and kidney tissues from patients with diabetic kidney disease had lower gene expression of PGC1α (a master regulator of mitochondrial biogenesis). We conclude that urine metabolomics is a reliable source for biomarkers of diabetic complications, and our data suggest that renal organic ion transport and mitochondrial function are dysregulated in diabetic kidney disease.


Diabetes Care | 2011

The Association Between Dietary Sodium Intake, ESRD, and All-Cause Mortality in Patients With Type 1 Diabetes

Merlin C. Thomas; John Moran; Carol Forsblom; Valma Harjutsalo; Lena M. Thorn; Aila J. Ahola; Johan Wadén; Nina Tolonen; Markku Saraheimo; Daniel Gordin; Per-Henrik Groop

OBJECTIVE Many guidelines recommend reduced consumption of salt in patients with type 1 diabetes, but it is unclear whether dietary sodium intake is associated with mortality and end-stage renal disease (ESRD). RESEARCH DESIGN AND METHODS In a nationwide multicenter study (the FinnDiane Study) between 1998 and 2002, 2,807 enrolled adults with type 1 diabetes without ESRD were prospectively followed. Baseline urinary sodium excretion was estimated on a 24-h urine collection. The predictors of all-cause mortality and ESRD were determined by Cox regression and competing risk modeling, respectively. RESULTS The median follow-up for survival analyses was 10 years, during which 217 deaths were recorded (7.7%). Urinary sodium excretion was nonlinearly associated with all-cause mortality, such that individuals with the highest daily urinary sodium excretion, as well as the lowest excretion, had reduced survival. This association was independent age, sex, duration of diabetes, the presence and severity of chronic kidney disease (CKD) (estimated glomerular filtration rate [eGFR] and log albumin excretion rate), the presence of established cardiovascular disease, and systolic blood pressure. During follow-up, 126 patients developed ESRD (4.5%). Urinary sodium excretion was inversely associated with the cumulative incidence of ESRD, such that individuals with the lowest sodium excretion had the highest cumulative incidence of ESRD. CONCLUSIONS In patients with type 1 diabetes, sodium was independently associated with all-cause mortality and ESRD. Although we have not demonstrated causality, these findings support the calls for caution before applying salt restriction universally. Clinical trials must be performed in diabetic patients to formally test the utility/risk of sodium restriction in this setting.


Diabetes Care | 2013

Linagliptin Lowers Albuminuria on Top of Recommended Standard Treatment in Patients With Type 2 Diabetes and Renal Dysfunction

Per-Henrik Groop; Mark E. Cooper; Perkovic; Angela Emser; Hans-Juergen Woerle; M. von Eynatten

OBJECTIVE Preclinical data suggest that linagliptin, a dipeptidyl peptidase-4 inhibitor, may lower urinary albumin excretion. The ability of linagliptin to lower albuminuria on top of renin-angiotensin-aldosterone system (RAAS) inhibition in humans was analyzed by pooling data from four similarly designed, 24-week, randomized, double-blind, placebo-controlled, phase III trials. RESEARCH DESIGN AND METHODS A pooled analysis of four completed studies identified 217 subjects with type 2 diabetes and prevalent albuminuria (defined as a urinary albumin-to-creatinine ratio [UACR] of 30−3,000 mg/g creatinine) while receiving stable doses of RAAS inhibitors. Participants were randomized to either linagliptin 5 mg/day (n = 162) or placebo (n= 55). The primary end point was the percentage change in geometric mean UACR from baseline to week 24. RESULTS UACR at week 24 was reduced by 32% (95% CI −42 to −21; P < 0.05) with linagliptin compared with 6% (95% CI −27 to +23) with placebo, with a between-group difference of 28% (95% CI −47 to −2; P = 0.0357). The between-group difference in the change in HbA1c from baseline to week 24 was −0.61% (−6.7 mmol/mol) in favor of linagliptin (95% CI −0.88 to −0.34% [−9.6 to −3.7 mmol/mol]; P < 0.0001). The albuminuria-lowering effect of linagliptin, however, was not influenced by race or HbA1c and systolic blood pressure (SBP) values at baseline or after treatment. CONCLUSIONS Linagliptin administered in addition to stable RAAS inhibitors led to a significant reduction in albuminuria in patients with type 2 diabetes and renal dysfunction. This observation was independent of changes in glucose level or SBP. Further research to prospectively investigate the renal effects of linagliptin is underway.


PLOS Genetics | 2012

New susceptibility loci associated with kidney disease in Type 1 diabetes

Niina Sandholm; Rany M. Salem; Amy Jayne McKnight; Eoin P. Brennan; Carol Forsblom; Tamara Isakova; Gareth J. McKay; Winfred W. Williams; Denise Sadlier; Ville Petteri Mäkinen; Elizabeth J. Swan; C. Palmer; Andrew P. Boright; Emma Ahlqvist; Harshal Deshmukh; Benjamin J. Keller; Huateng Huang; Aila J. Ahola; Emma Fagerholm; Daniel Gordin; Valma Harjutsalo; Bing He; Outi Heikkilä; Kustaa Hietala; Janne P. Kytö; Päivi Lahermo; Markku Lehto; Raija Lithovius; Anne-May Österholm; Maija Parkkonen

Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ∼2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2×10−8) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0×10−9). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1×10−7), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.


Diabetes | 2009

A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes.

Johan Wadén; Carol Forsblom; Lena M. Thorn; Daniel Gordin; Markku Saraheimo; Per-Henrik Groop

OBJECTIVE Recent data from the Diabetes Control and Complications Trial (DCCT) indicated that A1C variability is associated with the risk of diabetes microvascular complications. However, these results might have been influenced by the interventional study design. Therefore, we investigated the longitudinal associations between A1C variability and diabetes complications in patients with type 1 diabetes in the observational Finnish Diabetic Nephropathy (FinnDiane) Study. RESEARCH DESIGN AND METHODS A total of 2,107 patients in the FinnDiane Study had complete data on renal status and serial measurements of A1C from baseline to follow-up (median 5.7 years), and 1,845 patients had similar data on cardiovascular disease (CVD) events. Intrapersonal SD of serially measured A1C was considered a measure of variability. RESULTS During follow-up, 10.2% progressed to a higher albuminuria level or to end-stage renal disease, whereas 8.6% had a CVD event. The SD of serial A1C was 1.01 versus 0.75 (P < 0.001) for renal status and 0.87 versus 0.79 (P = 0.023) for CVD in progressors versus nonprogressors, respectively. In a Cox regression model, SD of serial A1C was independently associated with progression of renal disease (hazard ratio 1.92 [95% CI 1.49–2.47]) and of a CVD event (1.98 [1.39–2.82]) even when adjusting for mean A1C and traditional risk factors. Interestingly for CVD, mean serial A1C itself was not predictive even though SD of A1C was. CONCLUSIONS In patients with type 1 diabetes, A1C variability was not only predictive of incident microalbuminuria and progression of renal disease but also of incident CVD events.

Collaboration


Dive into the Per-Henrik Groop's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge