Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Per M. Arvidsson is active.

Publication


Featured researches published by Per M. Arvidsson.


Scientific Reports | 2016

Vortex ring behavior provides the epigenetic blueprint for the human heart.

Per M. Arvidsson; Sándor J. Kovács; Johannes Töger; Rasmus Borgquist; Einar Heiberg; Marcus Carlsson; Håkan Arheden

The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R2 = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health.


Journal of Magnetic Resonance Imaging | 2016

Vortex-ring mixing as a measure of diastolic function of the human heart: Phantom validation and initial observations in healthy volunteers and patients with heart failure.

Johannes Töger; Mikael Kanski; Per M. Arvidsson; Marcus Carlsson; Sándor J. Kovács; Rasmus Borgquist; Johan Revstedt; Gustaf Söderlind; Håkan Arheden; Einar Heiberg

PURPOSE To present and validate a new method for 4D flow quantification of vortex-ring mixing during early, rapid filling of the left ventricle (LV) as a potential index of diastolic dysfunction and heart failure. MATERIALS AND METHODS 4D flow mixing measurements were validated using planar laser-induced fluorescence (PLIF) in a phantom setup. Controls (n = 23) and heart failure patients (n = 23) were studied using 4D flow at 1.5T (26 subjects) or 3T (20 subjects) to determine vortex volume (VV) and inflowing volume (VVinflow ). The volume mixed into the vortex-ring was quantified as VVmix-in = VV-VVinflow . The mixing ratio was defined as MXR = VVmix-in /VV. Furthermore, we quantified the fraction of the end-systolic volume (ESV) mixed into the vortex-ring (VVmix-in /ESV) and the fraction of the LV volume at diastasis (DV) occupied by the vortex-ring (VV/DV). RESULTS PLIF validation of MXR showed fair agreement (R(2) = 0.45, mean ± SD 1 ± 6%). MXR was higher in patients compared to controls (28 ± 11% vs. 16 ± 10%, P < 0.001), while VVmix-in /ESV and VV/DV were lower in patients (10 ± 6% vs. 18 ± 12%, P < 0.01 and 25 ± 8% vs. 50 ± 6%, P < 0.0001). CONCLUSION Vortex-ring mixing can be quantified using 4D flow. The differences in mixing parameters observed between controls and patients motivate further investigation as indices of diastolic dysfunction. J. Magn. Reson. Imaging 2016;43:1386-1397.


Journal of Biomechanics | 2017

On estimating intraventricular hemodynamic forces from endocardial dynamics: A comparative study with 4D flow MRI

Gianni Pedrizzetti; Per M. Arvidsson; Johannes Töger; Rasmus Borgquist; Federico Domenichini; Håkan Arheden; Einar Heiberg

Intraventricular pressure gradients or hemodynamic forces, which are their global measure integrated over the left ventricular volume, have a fundamental importance in ventricular function. They may help revealing a sub-optimal cardiac function that is not evident in terms of tissue motion, which is naturally heterogeneous and variable, and can influence cardiac adaptation. However, hemodynamic forces are not utilized in clinical cardiology due to the unavailability of simple non-invasive measurement tools. Hemodynamic forces depend on the intraventricular flow; nevertheless, most of them are imputable to the dynamics of the endocardial flow boundary and to the exchange of momentum across the mitral and aortic orifices. In this study, we introduce a simplified model based on first principles of fluid dynamics that allows estimating hemodynamic forces without knowing the velocity field inside the LV. The model is validated with 3D phase-contrast MRI (known as 4D flow MRI) in 15 subjects, (5 healthy and 10 patients) using the endocardial surface reconstructed from the three standard long-axis projections. Results demonstrate that the model provides consistent estimates for the base-apex component (mean correlation coefficient r=0.77 for instantaneous values and r=0.88 for root mean square) and good estimates of the inferolateral-anteroseptal component (r=0.50 and 0.84, respectively). The present method represents a potential integration to the existing ones quantifying endocardial deformation in MRI and echocardiography to add a physics-based estimation of the corresponding hemodynamic forces. These could help the clinician to early detect sub-clinical diseases and differentiate between different cardiac dysfunctional states.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Letter to the Editor: Atrioventricular plane displacement is not the sole mechanism of atrial and ventricular refill

Per M. Arvidsson; Marcus Carlsson; Sándor J. Kovács; Håkan Arheden

we have read with great interest the recent Perspective by Arutunyan ([2][1]), titled “Atrioventricular plane displacement is the sole mechanism of atrial and ventricular refill,” in which the author revisited important, and perhaps not well-known, aspects of cardiac pumping physiology in an


PLOS ONE | 2018

Hemodynamic forces in the left and right ventricles of the human heart using 4D flow magnetic resonance imaging: Phantom validation, reproducibility, sensitivity to respiratory gating and free analysis software

Johannes Töger; Per M. Arvidsson; Jelena Bock; Mikael Kanski; Gianni Pedrizzetti; Marcus Carlsson; Håkan Arheden; Einar Heiberg

Purpose To investigate the accuracy, reproducibility and sensitivity to respiratory gating, field strength and ventricle segmentation of hemodynamic force quantification in the left and right ventricles of the heart (LV and RV) using 4D-flow magnetic resonance imaging (MRI), and to provide free hemodynamic force analysis software. Materials and methods A pulsatile flow phantom was imaged using 4D flow MRI and laser-based particle image velocimetry (PIV). Cardiac 4D flow MRI was performed in healthy volunteers at 1.5T (n = 23). Reproducibility was investigated using MR scanners from two different vendors on the same day (n = 8). Subsets of volunteers were also imaged without respiratory gating (n = 17), at 3T on the same day (n = 6), and 1–12 days later on the same scanner (n = 9, median 6 days). Agreement was measured using the intraclass correlation coefficient (ICC). Results Phantom validation showed good accuracy for both scanners (Scanner 1: bias -14±9%, y = 0.82x+0.08, R2 = 0.96, Scanner 2: bias -12±8%, y = 0.99x-0.08, R2 = 1.00). Force reproducibility was strong in the LV (0.09±0.07 vs 0.09±0.07 N, bias 0.00±0.04 N, ICC = 0.87) and RV (0.09±0.06 vs 0.09±0.05 N, bias 0.00±0.03, ICC = 0.83). Strong to very strong agreement was found for scans with and without respiratory gating (LV/RV: ICC = 0.94/0.95), scans on different days (ICC = 0.92/0.87), and 1.5T and 3T scans (ICC = 0.93/0.94). Conclusion Software for quantification of hemodynamic forces in 4D-flow MRI was developed, and results show high accuracy and strong to very strong reproducibility for both the LV and RV, supporting its use for research and clinical investigations. The software including source code is released freely for research.


Journal of Cardiovascular Magnetic Resonance | 2016

Intracardiac hemodynamic forces using 4D flow: a new reproducible method applied to healthy controls, elite athletes and heart failure patients

Johannes Töger; Per M. Arvidsson; Mikael Kanski; Katarina Steding-Ehrenborg; Gianni Pedrizzetti; Marcus Carlsson; Håkan Arheden; Einar Heiberg

Background Blood flow in the left ventricle (LV) is closely linked to the function of valves, great vessels and the myocardium. Previous studies have used the Pressure Poisson Equation (PPE) to compute relative pressure fields from 4D flow data. However, the PPE may be numerically sensitive to errors in velocities and delineations. Hemodynamic forces is a quantitative measure similar to relative pressure maps, which may be less sensitive to errors. Therefore, the aim of this study was to investigate the reproducibility of hemodynamic force quantification, and to present initial observations in controls, elite endurance athletes and patients with heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 2018

Hemodynamic forces using 4D flow MRI: an independent biomarker of cardiac function in heart failure with left ventricular dyssynchrony?

Per M. Arvidsson; Johannes Töger; Gianni Pedrizzetti; Einar Heiberg; Rasmus Borgquist; Marcus Carlsson; Håkan Arheden

Patients with heart failure with left ventricular (LV) dyssynchrony often do not respond to cardiac resynchronization therapy (CRT), indicating that the pathophysiology is insufficiently understood. Intracardiac hemodynamic forces computed from four-dimensional (4-D) flow MRI have been proposed as a new measure of cardiac function. We therefore aimed to investigate how hemodynamic forces are altered in LV dyssynchrony. Thirty-one patients with heart failure and LV dyssynchrony and 39 control subjects underwent cardiac MRI with the acquisition of 4-D flow. Hemodynamic forces were computed using Navier-Stokes equations and integrated over the manually delineated LV volume. The ratio between transverse (lateral-septal and inferior-anterior) and longitudinal (apical-basal) forces was calculated for systole and diastole separately and compared with QRS duration, aortic valve opening delay, global longitudinal strain, and ejection fraction (EF). Patients exhibited hemodynamic force patterns that were significantly altered compared with control subjects, including loss of longitudinal forces in diastole (force ratio, control subjects vs. patients: 0.32 vs. 0.90, P < 0.0001) and increased transverse force magnitudes. The systolic force ratio was correlated with global longitudinal strain and EF ( P < 0.01). The diastolic force ratio separated patients from control subjects (area under the curve: 0.98, P < 0.0001) but was not correlated to other dyssynchrony measures ( P > 0.05 for all). Hemodynamic forces by 4-D flow represent a new approach to the quantification of LV dyssynchrony. Diastolic force patterns separate healthy from diseased ventricles. Different force patterns in patients indicate the possible use of force analysis for risk stratification and CRT implantation guidance. NEW & NOTEWORTHY In this report, we demonstrate that patients with heart failure with left ventricular dyssynchrony exhibit significantly altered hemodynamic forces compared with normal. Force patterns in patients mechanistically reflect left ventricular dysfunction on the organ level, largely independent of traditional dyssynchrony measures. Force analysis may help clinical decision making and could potentially be used to improve therapy outcomes.


American Journal of Physiology-heart and Circulatory Physiology | 2018

Altered biventricular hemodynamic forces in patients with repaired Tetralogy of Fallot and right ventricular volume overload due to pulmonary regurgitation

Pia Sjöberg; Johannes Töger; Erik Hedström; Per M. Arvidsson; Einar Heiberg; Håkan Arheden; Ronny Gustafsson; Shahab Nozohoor; Marcus Carlsson

Intracardiac hemodynamic forces have been proposed to influence remodeling and be a marker of ventricular dysfunction. We aimed to quantify the hemodynamic forces in patients with repaired tetralogy of Fallot (rToF) to further understand the pathophysiological mechanisms as this could be a potential marker for pulmonary valve replacement (PVR) in these patients. Patients with rToF and pulmonary regurgitation (PR) > 20% ( n = 18) and healthy control subjects ( n = 15) underwent MRI, including four-dimensional flow. A subset of patients ( n = 8) underwent PVR and MRI after surgery. Time-resolved hemodynamic forces were quantified using 4D-flow data and indexed to ventricular volume. Patients had higher systolic and diastolic left ventricular (LV) hemodynamic forces compared with control subjects in the lateral-septal/LV outflow tract ( P = 0.011 and P = 0.0031) and inferior-anterior ( P < 0.0001 and P < 0.0001) directions, which are forces not aligned with blood flow. Forces did not change after PVR. Patients had higher RV diastolic forces compared with control subjects in the diaphragm-right ventricular (RV) outflow tract (RVOT; P < 0.001) and apical-basal ( P = 0.0017) directions. After PVR, RV systolic forces in the diaphragm-RVOT direction decreased ( P = 0.039) to lower levels than in control subjects ( P = 0.0064). RV diastolic forces decreased in all directions ( P = 0.0078, P = 0.0078, and P = 0.039) but were still higher than in control subjects in the diaphragm-RVOT direction ( P = 0.046). In conclusion, patients with rToF and PR had LV hemodynamic forces less aligned with intraventricular blood flow compared with control subjects and higher diastolic RV forces along the regurgitant flow direction in the RVOT and that of tricuspid inflow. Remaining force differences in the LV and RV after PVR suggest that biventricular pumping does not normalize after surgery. NEW & NOTEWORTHY Biventricular hemodynamic forces in patients with repaired tetralogy of Fallot and pulmonary regurgitation were quantified for the first time. Left ventricular hemodynamic forces were less aligned to the main blood flow direction in patients compared with control subjects. Higher right ventricular forces were seen along the pulmonary regurgitant and tricuspid inflow directions. Differences in forces versus control subjects remain after pulmonary valve replacement, suggesting that altered biventricular pumping does not normalize after surgery.Intracardiac hemodynamic forces have been proposed to influence remodeling and be a marker of ventricular dysfunction. We aimed to quantify the hemodynamic forces in patients with repaired tetralogy of Fallot (rToF) to further understand the pathophysiological mechanisms as this could be a potential marker for pulmonary valve replacement (PVR) in these patients. Patients with rToF and pulmonary regurgitation (PR) > 20% ( n = 18) and healthy control subjects ( n = 15) underwent MRI, including four-dimensional flow. A subset of patients ( n = 8) underwent PVR and MRI after surgery. Time-resolved hemodynamic forces were quantified using 4D-flow data and indexed to ventricular volume. Patients had higher systolic and diastolic left ventricular (LV) hemodynamic forces compared with control subjects in the lateral-septal/LV outflow tract ( P = 0.011 and P = 0.0031) and inferior-anterior ( P < 0.0001 and P < 0.0001) directions, which are forces not aligned with blood flow. Forces did not change after PVR. Patients had higher RV diastolic forces compared with control subjects in the diaphragm-right ventricular (RV) outflow tract (RVOT; P < 0.001) and apical-basal ( P = 0.0017) directions. After PVR, RV systolic forces in the diaphragm-RVOT direction decreased ( P = 0.039) to lower levels than in control subjects ( P = 0.0064). RV diastolic forces decreased in all directions ( P = 0.0078, P = 0.0078, and P = 0.039) but were still higher than in control subjects in the diaphragm-RVOT direction ( P = 0.046). In conclusion, patients with rToF and PR had LV hemodynamic forces less aligned with intraventricular blood flow compared with control subjects and higher diastolic RV forces along the regurgitant flow direction in the RVOT and that of tricuspid inflow. Remaining force differences in the LV and RV after PVR suggest that biventricular pumping does not normalize after surgery. NEW & NOTEWORTHY Biventricular hemodynamic forces in patients with repaired tetralogy of Fallot and pulmonary regurgitation were quantified for the first time. Left ventricular hemodynamic forces were less aligned to the main blood flow direction in patients compared with control subjects. Higher right ventricular forces were seen along the pulmonary regurgitant and tricuspid inflow directions. Differences in forces versus control subjects remain after pulmonary valve replacement, suggesting that altered biventricular pumping does not normalize after surgery.


Acta Radiologica | 2018

Validation and reproducibility of cardiovascular 4D-flow MRI from two vendors using 2 × 2 parallel imaging acceleration in pulsatile flow phantom and in vivo with and without respiratory gating:

Jelena Bock; Johannes Töger; Sebastian Bidhult; Karin Markenroth Bloch; Per M. Arvidsson; Mikael Kanski; Håkan Arheden; Frederik Testud; Andreas Greiser; Einar Heiberg; Marcus Carlsson

Background 4D-flow magnetic resonance imaging (MRI) is increasingly used. Purpose To validate 4D-flow sequences in phantom and in vivo, comparing volume flow and kinetic energy (KE) head-to-head, with and without respiratory gating. Material and Methods Achieva dStream (Philips Healthcare) and MAGNETOM Aera (Siemens Healthcare) 1.5-T scanners were used. Phantom validation measured pulsatile, three-dimensional flow with 4D-flow MRI and laser particle imaging velocimetry (PIV) as reference standard. Ten healthy participants underwent three cardiac MRI examinations each, consisting of cine-imaging, 2D-flow (aorta, pulmonary artery), and 2 × 2 accelerated 4D-flow with (Resp+) and without (Resp−) respiratory gating. Examinations were acquired consecutively on both scanners and one examination repeated within two weeks. Volume flow in the great vessels was compared between 2D- and 4D-flow. KE were calculated for all time phases and voxels in the left ventricle. Results Phantom results showed high accuracy and precision for both scanners. In vivo, higher accuracy and precision (P < 0.001) was found for volume flow for the Aera prototype with Resp+ (–3.7 ± 10.4 mL, r = 0.89) compared to the Achieva product sequence (–17.8 ± 18.6 mL, r = 0.56). 4D-flow Resp− on Aera had somewhat larger bias (–9.3 ± 9.6 mL, r = 0.90) compared to Resp+ (P = 0.005). KE measurements showed larger differences between scanners on the same day compared to the same scanner at different days. Conclusion Sequence-specific in vivo validation of 4D-flow is needed before clinical use. 4D-flow with the Aera prototype sequence with a clinically acceptable acquisition time (<10 min) showed acceptable bias in healthy controls to be considered for clinical use. Intra-individual KE comparisons should use the same sequence.


Journal of Cardiovascular Magnetic Resonance | 2016

The shape of the healthy heart is optimized for vortex ring formation

Per M. Arvidsson; Sándor J. Kovács; Johannes Töger; Rasmus Borgquist; Einar Heiberg; Marcus Carlsson; Håkan Arheden

Background Intracardiac blood flow is known to influence cardiac development through transduction of endothelial shear forces. Vortex rings inside the left ventricle constitute a possible “blueprint” for cardiogenesis, the hemodynamic determinant of final cardiac shape. However, the relationship between the vortex ring and endocardium has previously not been quantified, and the influence of the vortex ring dimensions on the shape of the heart has therefore not been considered. We hypothesized a dynamic coupling between the vortex ring and the healthy left ventricle throughout diastole, and uncoupling in the diseased heart (Fig. 1). Methods 16 healthy volunteers and 23 patients with heart failure (n = 12 ischemic, n = 11 non-ischemic dilated cardiomyopathy), underwent CMR examination at 1.5T (n = 27) or 3T (n = 8), including 4D flow. Vortex ring boundary was calculated using Lagrangian Coherent Structures (LCS) and CUDA parallel computing. Vortex ring and LV endocardium were manually delineated, and the average distance between the delineations was measured for all time points in diastole.

Collaboration


Dive into the Per M. Arvidsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sándor J. Kovács

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge