Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Per Mose Nielsen is active.

Publication


Featured researches published by Per Mose Nielsen.


Magnetic Resonance in Medicine | 2016

Renal ischemia and reperfusion assessment with three‐dimensional hyperpolarized 13C,15N2‐urea

Per Mose Nielsen; Esben Søvsø Szocska Hansen; Thomas Stokholm Nørlinger; Rikke Nørregaard; Lotte Bonde Bertelsen; Hans Stødkilde Jørgensen; Christoffer Laustsen

The aim of this work was to investigate whether hyperpolarized 13C,15N2‐urea can be used as an imaging marker of renal injury in renal unilateral ischemic reperfusion injury (IRI), given that urea is correlated with the renal osmotic gradient, which describes the renal function.


Magnetic Resonance in Medicine | 2016

Hyperpolarized 13C urea relaxation mechanism reveals renal changes in diabetic nephropathy.

Christoffer Laustsen; Thomas Stokholm Nørlinger; David C. Hansen; Haiyun Qi; Per Mose Nielsen; Lotte Bonde Bertelsen; Jan Henrik Ardenkjaer-Larsen; Hans Stødkilde Jørgensen

Our aim was to assess a novel 13C radial fast spin echo golden ratio single shot method for interrogating early renal changes in the diabetic kidney, using hyperpolarized (HP) [13C,15N2]urea as a T2 relaxation based contrast bio‐probe.


American Journal of Physiology-renal Physiology | 2017

Antioxidant treatment attenuates lactate production in diabetic nephropathy

Christoffer Laustsen; Per Mose Nielsen; Thomas Stokholm Nørlinger; Haiyun Qi; U. Pedersen; Lotte Bonde Bertelsen; Jakob Appel Østergaard; Allan Flyvbjerg; Jan Henrik Ardenkjaer-Larsen; Fredrik Palm; Hans Stødkilde-Jørgensen

The early progression of diabetic nephropathy is notoriously difficult to detect and quantify before the occurrence of substantial histological damage. Recently, hyperpolarized [1-13C]pyruvate has demonstrated increased lactate production in the kidney early after the onset of diabetes, implying increased lactate dehydrogenase activity as a consequence of increased nicotinamide adenine dinucleotide substrate availability due to upregulation of the polyol pathway, i.e., pseudohypoxia. In this study, we investigated the role of oxidative stress in mediating these metabolic alterations using state-of-the-art hyperpolarized magnetic resonance (MR) imaging. Ten-week-old female Wistar rats were randomly divided into three groups: healthy controls, untreated diabetic (streptozotocin treatment to induce insulinopenic diabetes), and diabetic, receiving chronic antioxidant treatment with TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) via the drinking water. Examinations were performed 2, 3, and 4 wk after the induction of diabetes by using a 3T Clinical MR system equipped with a dual tuned 13C/1H-volume rat coil. The rats received intravenous hyperpolarized [1-13C]pyruvate and were imaged using a slice-selective 13C-IDEAL spiral sequence. Untreated diabetic rats showed increased renal lactate production compared with that shown by the controls. However, chronic TEMPOL treatment significantly attenuated diabetes-induced lactate production. No significant effects of diabetes or TEMPOL were observed on [13C]alanine levels, indicating an intact glucose-alanine cycle, or [13C]bicarbonate, indicating normal flux through the Krebs cycle. In conclusion, this study demonstrates that diabetes-induced pseudohypoxia, as indicated by an increased lactate-to-pyruvate ratio, is significantly attenuated by antioxidant treatment. This demonstrates a pivotal role of oxidative stress in renal metabolic alterations occurring in early diabetes.


Magnetic Resonance in Medicine | 2017

Diabetes induced renal urea transport alterations assessed with 3D hyperpolarized 13C,15N-Urea

Lotte Bonde Bertelsen; Per Mose Nielsen; Haiyun Qi; Thomas Stokholm Nørlinger; Xiaolu Zhang; Hans Stødkilde-Jørgensen; Christoffer Laustsen

In the current study, we investigated hyperpolarized urea as a possible imaging biomarker of the renal function by means of the intrarenal osmolality gradient.


American Journal of Physiology-renal Physiology | 2017

In situ lactate dehydrogenase activity: a novel renal cortical imaging biomarker of tubular injury?

Per Mose Nielsen; Christoffer Laustsen; Lotte Bonde Bertelsen; Haiyun Qi; Emmeli Mikkelsen; Marie Louise Vindvad Kristensen; Rikke Nørregaard; Hans Stødkilde-Jørgensen

Renal ischemia-reperfusion injury is the state of which a tissue experiences injury after a phase of restrictive blood supply and recirculation. Ischemia-reperfusion injury (I/R-I) is a leading cause of acute kidney injury (AKI) in several disease states, including kidney transplantation, sepsis, and hypovolemic shock. The most common methods to evaluate AKI are creatinine clearance, plasma creatinine, blood urea nitrogen, or renal histology. However, currently, there are no precise methods to directly assess renal injury state noninvasively. Hyperpolarized 13C-pyruvate MRI enables noninvasive accurate quantification of the in vivo conversion of pyruvate to lactate, alanine, and bicarbonate. In the present study, we investigated the in situ alterations of metabolic conversion of pyruvate to lactate, alanine, and bicarbonate in a unilateral I/R-I rat model with 30 min and 60 min of ischemia followed by 24 h of reperfusion. The pyruvate conversion was unaltered compared with sham in the 30 min I/R-I group, while a significant reduced metabolic conversion was found in the postischemic kidney after 60 min of ischemia. This indicates that after 30 min of ischemia, the kidney maintains normal metabolic function in spite of decreased kidney function, whereas the postischemic kidney after 60 min of ischemia show a generally reduced metabolic enzyme activity concomitant with a reduced kidney function. We have confidence that these findings can have a high prognostic value in prediction of kidney injury and the outcome of renal injury.


Physiological Reports | 2016

Early diabetic kidney maintains the corticomedullary urea and sodium gradient.

Haiyun Qi; Thomas Stokholm Nørlinger; Per Mose Nielsen; Lotte Bonde Bertelsen; Emmeli Mikkelsen; Yafang Xu; Hans Stødkilde Jørgensen; Christoffer Laustsen

Early diabetic nephropathy is largely undetectable before substantial functional changes have occurred. In the present study, we investigated the distribution of electrolytes and urea in the early diabetic kidney in order to explore whether pathophysiological and metabolic changes appear concomitantly with a decreased sodium and urea gradient. By using hyperpolarized 13C urea it was possible to measure the essential intrarenal electrolyte gradients and the acute changes following furosemide treatment. No differences in either intrarenal urea or sodium gradients were observed in early diabetes compared to healthy controls. These results indicate that the early metabolic and hypertrophic changes occurring in the diabetic kidney prelude the later functional alterations in diabetic kidney function, thus driving the increased metabolic demand commonly occurring in the diabetic kidney.


Scientific Reports | 2017

Fumarase activity: an in vivo and in vitro biomarker for acute kidney injury.

Per Mose Nielsen; Abubakr Eldirdiri; Lotte Bonde Bertelsen; Hans Stødkilde Jørgensen; Jan Henrik Ardenkjaer-Larsen; Christoffer Laustsen

Renal ischemia/reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), and at present, there is a lack of reliable biomarkers that can diagnose AKI and measure early progression because the commonly used methods cannot evaluate single-kidney IRI. Hyperpolarized [1,4-13C2]fumarate conversion to [1,4-13C2]malate by fumarase has been proposed as a measure of necrosis in rat tumor models and in chemically induced AKI rats. Here we show that the degradation of cell membranes in connection with necrosis leads to elevated fumarase activity in plasma and urine and secondly that hyperpolarized [1,4-13C2]malate production 24 h after reperfusion correlates with renal necrosis in a 40-min unilateral ischemic rat model. Fumarase activity screening on bio-fluids can detect injury severity, in bilateral as well as unilateral AKI models, differentiating moderate and severe AKI as well as short- and long-term AKI. Furthermore after verification of renal injury by bio-fluid analysis the precise injury location can be monitored by in vivo measurements of the fumarase activity non-invasively by hyperpolarized [1,4-13C]fumarate MR imaging. The combined in vitro and in vivo biomarker of AKI responds to the essential requirements for a new reliable biomarker of AKI.


NMR in Biomedicine | 2017

Imaging porcine cardiac substrate selection modulations by glucose, insulin and potassium intervention: A hyperpolarized [1-13C]pyruvate study

Esben Søvsø Szocska Hansen; Rasmus Stilling Tougaard; Thomas Stokholm Nørlinger; Emmeli Mikkelsen; Per Mose Nielsen; Lotte Bonde Bertelsen; Hans Erik Bøtker; Hans Stødkilde Jørgensen; Christoffer Laustsen

Cardiac metabolism has received considerable attention in terms of both diagnostics and prognostics, as well as a novel target for treatment. As human trials involving hyperpolarized magnetic resonance in the heart are imminent, we sought to evaluate the general feasibility of detection of an imposed shift in metabolic substrate utilization during metabolic modulation with glucose–insulin–potassium (GIK) infusion, and thus the limitations associated with this strategy, in a large animal model resembling human physiology. Four [1‐13C]pyruvate injections did not alter the blood pressure or ejection fraction over 180 min. Hyperpolarized [1‐13C]pyruvate conversion showed a generally high reproducibility, with intraclass correlation coefficients between the baseline measurements at 0 and 30 min as follows: lactate to pyruvate, 0.85; alanine to pyruvate, 1.00; bicarbonate to pyruvate, 0.83. This study demonstrates that hyperpolarized [1‐13C]pyruvate imaging is a feasible technique for cardiac studies and shows a generally high reproducibility in fasted large animals. GIK infusion increases the metabolic conversion of pyruvate to its metabolic derivatives lactate, alanine and bicarbonate, but with increased variability.


Journal of Inorganic Biochemistry | 2015

Inhibitory effects of nitrite on the reactions of bovine carbonic anhydrase II with CO2 and bicarbonate consistent with zinc-bound nitrite

Per Mose Nielsen; Angela Fago

Carbonic anhydrase (CA) is a zinc enzyme that catalyzes hydration of carbon dioxide (CO2) and dehydration of bicarbonate in red blood cells, thus facilitating CO2 transport and excretion. Bovine CA II may also react with nitrite to generate nitric oxide, although nitrite is a known inhibitor of the CO2 hydration reaction. To address the potential in vivo interference of these reactions and the nature of nitrite binding to the enzyme, we here investigate the inhibitory effect of 10-30 mM nitrite on Michaelis-Menten kinetics of CO2 hydration and bicarbonate dehydration by stopped-flow spectroscopy. Our data show that nitrite significantly affects the apparent dissociation constant KM for CO2 (11 mM) and bicarbonate (221 mM), and the turnover number kcat for the CO2 hydration (1.467 × 10(6) s(-1)) but not for the bicarbonate dehydration (7.927 × 10(5) s(-1)). These effects demonstrate mixed and competitive inhibition for the reaction with CO2 and bicarbonate, respectively, and are consistent with nitrite binding to the active site zinc. The high apparent dissociation constant found here for CO2, bicarbonate and nitrite (16-120 mM) are all overall consistent with published data and reveal a large capacity of free enzyme available for binding each of the three substrates at their in vivo levels, with little or no significant interference among reactions. The low affinity of the enzyme for nitrite suggests that the in vivo interaction between red blood cell CA II and nitrite requires compartmentalization at the anion exchanger protein of the red cell membrane to be physiologically relevant.


Jacc-cardiovascular Imaging | 2017

Hyperpolarized [1,4-13C2]Fumarate Enables Magnetic Resonance-Based Imaging of Myocardial Necrosis

Jack J. Miller; Angus Z. Lau; Per Mose Nielsen; Giles McMullen-Klein; Andrew Lewis; Nichlas Riise Jespersen; Vicky Ball; Ferdia A. Gallagher; Carolyn A. Carr; Christoffer Laustsen; Hans Erik Bøtker; Damian J. Tyler; Marie Schroeder

Objectives The aim of this study was to determine if hyperpolarized [1,4–13C2]malate imaging could measure cardiomyocyte necrosis after myocardial infarction (MI). Background MI is defined by an acute burst of cellular necrosis and the subsequent cascade of structural and functional adaptations. Quantifying necrosis in the clinic after MI remains challenging. Magnetic resonance-based detection of the conversion of hyperpolarized [1,4–13C2]fumarate to [1,4–13C2]malate, enabled by disrupted cell membrane integrity, has measured cellular necrosis in vivo in other tissue types. Our aim was to determine whether hyperpolarized [1,4–13C2]malate imaging could measure necrosis after MI. Methods Isolated perfused hearts were given hyperpolarized [1,4–13C2]fumarate at baseline, immediately after 20 min of ischemia, and after 45 min of reperfusion. Magnetic resonance spectroscopy measured conversion into [1,4–13C2]malate. Left ventricular function and energetics were monitored throughout the protocol, buffer samples were collected and hearts were preserved for further analyses. For in vivo studies, magnetic resonance spectroscopy and a novel spatial-spectral magnetic resonance imaging sequence were implemented to assess cardiomyocyte necrosis in rats, 1 day and 1 week after cryo-induced MI. Results In isolated hearts, [1,4–13C2]malate production became apparent after 45 min of reperfusion, and increased 2.7-fold compared with baseline. Expression of dicarboxylic acid transporter genes were negligible in healthy and reperfused hearts, and lactate dehydrogenase release and infarct size were significantly increased in reperfused hearts. Nonlinear regression revealed that [1,4–13C2]malate production was induced when adenosine triphosphate was depleted by >50%, below 5.3 mmol/l (R2 = 0.904). In vivo, the quantity of [1,4–13C2]malate visible increased 82-fold over controls 1 day after infarction, maintaining a 31-fold increase 7 days post-infarct. [1,4–13C2]Malate could be resolved using hyperpolarized magnetic resonance imaging in the infarct region one day after MI; [1,4–13C2]malate was not visible in control hearts. Conclusions Malate production in the infarcted heart appears to provide a specific probe of necrosis acutely after MI, and for at least 1 week afterward. This technique could offer an alternative noninvasive method to measure cellular necrosis in heart disease, and warrants further investigation in patients.

Collaboration


Dive into the Per Mose Nielsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge