Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Per Sundberg is active.

Publication


Featured researches published by Per Sundberg.


Molecular Phylogenetics and Evolution | 2008

Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies

Fredrik Pleijel; U. Jondelius; E. Norlinder; Arne Nygren; Bengt Oxelman; Christoffer Schander; Per Sundberg; M. Thollesson

Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies


Evolution | 2007

Build-up of the Himalayan avifauna through immigration: a biogeographical analysis of the Phylloscopus and Seicercus warblers.

Ulf S. Johansson; Per Alström; Urban Olsson; Per G. P. Ericson; Per Sundberg; Trevor D. Price

Abstract The Himalayan mountain range is one of the most species-rich areas in the world, harboring about 8% of the worlds bird species. In this study, we compare the relative importance of immigration versus in situ speciation to the build-up of the Himalayan avifauna, by evaluating the biogeographic history of the Phylloscopus/Seicercus warblers, a speciose clade that is well represented in Himalayan forests. We use a comprehensive, multigene phylogeny in conjunction with dispersal-vicariance analysis to discern patterns of speciation and dispersal within this clade. The results indicate that virtually no speciation has occurred within the Himalayas. Instead, several speciation events are attributed to dispersal into the Himalayas followed by vicariance between the Himalayas and China/Southeast Asia. Most, perhaps all, of these events appear to be pre-Pleistocene. The apparent lack of speciation within the Himalayas stands in contrast to the mountain-driven Pleistocene speciation suggested for the Andes and the East African mountains.


Molecular Phylogenetics and Evolution | 2003

Phylogeny and evolution of reproductive modes in Autolytinae (Syllidae, Annelida)

Arne Nygren; Per Sundberg

The phylogeny of 31 autolytine taxa (Syllidae, Polychaeta, and Annelida) was estimated based on 16S rDNA and 18S rDNA sequences. Outgroups included 12 non-autolytine syllids and four other annelids from related groups. The phylogeny was used to trace the evolution of the various reproductive strategies (i.e., epigamy, anterior and posterior scissiparity, and gemmiparity) within the group, and it will also serve as a basis for a forthcoming revision of autolytine taxonomy. The two genes were analysed both separately and in combination using parsimony, maximum likelihood, and Bayesian inference. Regardless of method used the combined analysis supported a division of Autolytinae into three major clades: one with epigamous Autolytus; a second comprising Autolytus and Myrianida with posterior scissiparity and gemmiparity; and a third containing Proceraea, Procerastea, and Virchowia with anterior scissiparity. The relationship between these three groups is uncertain. Ancestral reproductive states were reconstructed with parsimony and maximum likelihood, and the results unequivocally support epigamy as the plesiomorphic reproductive mode in Syllidae, and that schizogamy in Syllinae and Autolytinae are separate events. The evolution of reproductive traits is ambiguous within Autolytinae, and either of the different reproductive modes could represent the ancestral state.


Journal of Molecular Evolution | 2003

Phylogenetic Analysis of the Cytochrome P450 3 (CYP3) Gene Family

Andrew G. McArthur; Tove Hegelund; Rachel L. Cox; John J. Stegeman; Mette Liljenberg; Urban Olsson; Per Sundberg; Malin Celander

Cytochrome P450 genes (CYP) constitute a superfamily with members known from the Bacteria, Archaea, and Eukarya. The CYP3 gene family includes the CYP3A and CYP3B subfamilies. Members of the CYP3A subfamily represent the dominant CYP forms expressed in the digestive and respiratory tracts of vertebrates. The CYP3A enzymes metabolize a wide variety of chemically diverse lipophilic organic compounds. To understand vertebrate CYP3 diversity better, we determined the killifish (Fundulus heteroclitus) CYP3A30 and CYP3A56 and the ball python (Python regius) CYP3A42 sequences. We performed phylogenetic analyses of 45 vertebrate CYP3 amino acid sequences using a Bayesian approach. Our analyses indicate that teleost, diapsid, and mammalian CYP3A genes have undergone independent diversification and that the ancestral vertebrate genome contained a single CYP3A gene. Most CYP3A diversity is the product of recent gene duplication events. There is strong support for placement of the guinea pig CYP3A genes within the rodent CYP3A diversification. The rat, mouse, and hamster CYP3A genes are mixed among several rodent CYP3A subclades, indicative of a complex history involving speciation and gene duplication. Phylogenetic analyses suggest two CYP3A gene duplication events early in rodent history, with the rat CYP3A9 and mouse Cyp3a13 clade having a sister relationship to all other rodent CYP3A genes. In primate history, the human CYP3A43 gene appears to have a sister relationship to all other known primate CYP3A genes. Other, more recent gene duplications are hypothesized to have occurred independently within the human, pig, rat, mouse, guinea pig, and fish genomes. Functional analyses suggest that gene duplication is strongly tied to acquisition of new function and that convergent evolution of CYP3A function may be frequent among independent gene copies.


Cladistics | 2012

Disentangling Ribbon Worm Relationships: Multi-Locus Analysis Supports Traditional Classification of the Phylum Nemertea

Sónia C. S. Andrade; Malin Strand; Megan L. Schwartz; Hai-Xia Chen; Hiroshi Kajihara; Jörn von Döhren; Shi-Chun Sun; Juan Junoy; Martin Thiel; Jon L. Norenburg; James M. Turbeville; Gonzalo Giribet; Per Sundberg

The phylogenetic relationships of selected members of the phylum Nemertea are explored by means of six markers amplified from the genomic DNA of freshly collected specimens (the nuclear 18S rRNA and 28S rRNA genes, histones H3 and H4, and the mitochondrial genes 16S rRNA and cytochrome c oxidase subunit I). These include all previous markers and regions used in earlier phylogenetic analyses of nemerteans, therefore acting as a scaffold to which one could pinpoint any previously published study. Our results, based on analyses of static and dynamic homology concepts under probabilistic and parsimony frameworks, agree in the non‐monophyly of Palaeonemertea and in the monophyly of Heteronemerta and Hoplonemertea. The position of Hubrechtella and the Pilidiophora hypothesis are, however, sensitive to analytical method, as is the monophyly of the non‐hubrechtiid palaeonemerteans. Our results are, however, consistent with the main division of Hoplonemertea into Polystilifera and Monostilifera, the last named being divided into Cratenemertea and Distromatonemertea, as well as into the main division of Heteronemertea into Baseodiscus and the remaining species. The study also continues to highlight the deficient taxonomy at the family and generic level within Nemertea and sheds light on the areas of the tree that require further refinement.


Molecular Phylogenetics and Evolution | 2009

The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes.

Judith Fuchs; Matthias Obst; Per Sundberg

Bryozoa is one of the most puzzling phyla in the animal kingdom and little is known about their evolutionary history. Its phylogenetic position among the Metazoa remains unsettled, as well as its intra-phylum relationships. Here, we present the first comprehensive molecular phylogeny of Bryozoa based on the mitochondrial gene COI and two nuclear genes 18S rDNA and 28S rDNA including 32 species from 23 families. We show that the monophyletic status is supported for the phylum as well as for previously defined bryozoan classes. The 28S rDNA supports a close relationship of Phylactolaemata and Stenolaemata, while partial COI and 18S rDNA show the freshwater Phylactolaemata as basal bryozoans. The Gymnolaemata have generally been divided into soft-bodied forms (Ctenostomata) and hard-bodied species (Cheilostomata). In our analyses all three genes conflict with this assumption and show hard body forms having evolved within Gymnolaemata several times.


Zoologica Scripta | 1994

Phylogenetic classification and the definition of taxon names

Per Sundberg; Fredrik Pleijel

Taxon names should be founded on phylogenetic relationships. and the names defined on the basis of common ancestry. Definitions based on evolutionary relationships relate the names to a phylogeny, and while the inclusiveness of the name may change with changing hypotheses of monophyly, the actual name remains unaltered. The limits of the name arc fixed by pointing to a monophyletic clade, where group membership is determined by the relationship to this clade. and not to subjective decisions of taxon delineations. Since phylogenetic definitions unambiguously connect the name to a specified clade, and not to a type, the conventional type concept becomes superfluous. We furthermore consider the Linnean categories poorly suited to convey the information in evolutionary trees, and suggest that these categories are abandoned.


PLOS ONE | 2010

Statistical Parsimony Networks and Species Assemblages in Cephalotrichid Nemerteans (Nemertea)

Hai-Xia Chen; Malin Strand; Jon L. Norenburg; Shi-Chun Sun; Hiroshi Kajihara; Alexey V. Chernyshev; Svetlana A. Maslakova; Per Sundberg

Background It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. Methodology/Principal Findings Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. Conclusions/Significance Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling.


The Biological Bulletin | 2001

Molecular Phylogeny of the Model Annelid Ophryotrocha

Thomas G. Dahlgren; Bertil Åkesson; Christoffer Schander; Kenneth M. Halanych; Per Sundberg

Annelids of the genus Ophryotrocha are small opportunistic worms commonly found in polluted and nutrient-rich habitats such as harbors. Within this small group of about 40 described taxa a large variety of reproductive strategies are found, ranging from gonochoristic broadcast spawners to sequential hermaphroditic brooders. Many of the species have a short generation time and are easily maintained as laboratory cultures. Thus they have become a popular system for exploring a variety of biological questions including developmental genetics, ethology, and sexual selection. Despite considerable behavioral, reproductive, and karyological studies, a phylogenetic framework is lacking because most taxa are morphologically similar. In this study we use 16S mitochondrial gene sequence data to infer the phylogeny of Ophryotrocha strains commonly used in the laboratory. The resulting mtDNA topologies are generally well resolved and support a genetic split between hermaphroditic and gonochoristic species. Although the ancestral state could not be unambiguously identified, a change in reproductive strategy (i.e., hermaphroditism and gonochorism) occurred once within Ophryotrocha. Additionally, we show that sequential hermaphroditism evolved from a simultaneous hermaphroditic ancestor, and that characters previously used in phylogenetic reconstruction (i.e., jaw morphology and shape of egg mass) are homoplasic within the group.


Molecular Phylogenetics and Evolution | 2008

Phylogeny and classification of the Old World Emberizini (Aves, Passeriformes)

Per Alström; Urban Olsson; Fumin Lei; Haitao Wang; Wei Gao; Per Sundberg

The phylogeny of the avian genus Emberiza and the monotypic genera Latoucheornis, Melophus and Miliaria (collectively the Old World Emberizini), as well as representatives for the New World Emberizini, the circumpolar genera Calcarius and Plectrophenax and the four other generally recognized tribes in the subfamily Emberizinae was estimated based on the mitochondrial cytochrome b gene and introns 6-7 of the nuclear ornithine decarboxylase (ODC) gene. Our results support monophyly of the Old World Emberizini, but do not corroborate a sister relationship to the New World Emberizini. Calcarius and Plectrophenax form a clade separated from the other Emberizini. This agrees with previous studies, and we recommend the use of the name Calcariini. Latoucheornis, Melophus and Miliaria are nested within Emberiza, and we therefore propose they be synonymized with Emberiza. Emberiza is divided into four main clades, whose relative positions are uncertain, although a sister relation between a clade with six African species and one comprising the rest of the species (30, all Palearctic) is most likely. Most clades agree with traditional, morphology-based, classifications. However, four sister relationships within Emberiza, three of which involve the previously recognized Latoucheornis, Melophus and Miliaria, are unpredicted, and reveal cases of strong morphological divergence. In contrast, the plumage similarity between adult male Emberiza (formerly Latoucheornis) siemsseni and the nominate subspecies of the New World Junco hyemalis is shown to be the result of parallel evolution. A further case of parallel plumage evolution, between African and Eurasian taxa, is pointed out. Two cases of discordance between the mitochondrial and nuclear data with respect to branch lengths and genetic divergences are considered to be the result of introgressive hybridization.

Collaboration


Dive into the Per Sundberg's collaboration.

Top Co-Authors

Avatar

Malin Strand

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Urban Olsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shi-Chun Sun

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Hai-Xia Chen

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Per G. P. Ericson

Swedish Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Nygren

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jon L. Norenburg

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Ray Gibson

Liverpool John Moores University

View shared research outputs
Researchain Logo
Decentralizing Knowledge