Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pere Roca-Cusachs is active.

Publication


Featured researches published by Pere Roca-Cusachs.


Science | 2009

Stretching Single Talin Rod Molecules Activates Vinculin Binding

Armando del Rio; Raul Perez-Jimenez; Ruchuan Liu; Pere Roca-Cusachs; Julio M. Fernandez; Michael P. Sheetz

The molecular mechanism by which a mechanical stimulus is translated into a chemical response in biological systems is still unclear. We show that mechanical stretching of single cytoplasmic proteins can activate binding of other molecules. We used magnetic tweezers, total internal reflection fluorescence, and atomic force microscopy to investigate the effect of force on the interaction between talin, a protein that links liganded membrane integrins to the cytoskeleton, and vinculin, a focal adhesion protein that is activated by talin binding, leading to reorganization of the cytoskeleton. Application of physiologically relevant forces caused stretching of single talin rods that exposed cryptic binding sites for vinculin. Thus in the talin-vinculin system, molecular mechanotransduction can occur by protein binding after exposure of buried binding sites in the talin-vinculin system. Such protein stretching may be a more general mechanism for force transduction.


Developmental Cell | 2010

Stretchy Proteins on Stretchy Substrates: The Important Elements of Integrin-Mediated Rigidity Sensing

Simon W. Moore; Pere Roca-Cusachs; Michael P. Sheetz

Matrix and tissue rigidity guides many cellular processes, including the differentiation of stem cells and the migration of cells in health and disease. Cells actively and transiently test rigidity using mechanisms limited by inherent physical parameters that include the strength of extracellular attachments, the pulling capacity on these attachments, and the sensitivity of the mechanotransduction system. Here, we focus on rigidity sensing mediated through the integrin family of extracellular matrix receptors and linked proteins and discuss the evidence supporting these proteins as mechanosensors.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction

Pere Roca-Cusachs; Nils C. Gauthier; Armando del Rio; Michael P. Sheetz

A key molecular link between cells and the extracellular matrix is the binding between fibronectin and integrins α5β1 and αvβ3. However, the roles of these different integrins in establishing adhesion remain unclear. We tested the adhesion strength of fibronectin-integrin-cytoskeleton linkages by applying physiological nanonewton forces to fibronectin-coated magnetic beads bound to cells. We report that the clustering of fibronectin domains within 40 nm led to integrin α5β1 recruitment, and increased the ability to sustain force by over six-fold. This force was supported by α5β1 integrin clusters. Importantly, we did not detect a role of either integrin αvβ3 or talin 1 or 2 in maintaining adhesion strength. Instead, these molecules enabled the connection to the cytoskeleton and reinforcement in response to an applied force. Thus, high matrix forces are primarily supported by clustered α5β1 integrins, while less stable links to αvβ3 integrins initiate mechanotransduction, resulting in reinforcement of integrin-cytoskeleton linkages through talin-dependent bonds.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading

Nils C. Gauthier; Marc-Antoine Fardin; Pere Roca-Cusachs; Michael P. Sheetz

Cell migration and spreading involve the coordination of membrane trafficking, actomyosin contraction, and modifications to plasma membrane tension and area. The biochemical or biophysical basis for this coordination is however unknown. In this study, we show that during cell spreading, lamellipodia protrusion flattens plasma membrane folds and blebs and, once the plasma membrane area is depleted, there is a temporary increase in membrane tension by over twofold that is followed by activation of exocytosis and myosin contraction. Further, an artificial increase in plasma membrane tension stopped lamellipodia protrusion and activated an exocytotic burst. Subsequent decrease in tension restored spreading with activation of contraction. Conversely, blebbistatin inhibition of actomyosin contraction resulted in an even greater increase in plasma membrane tension and exocytosis activation. This spatiotemporal synchronization indicates that membrane tension is the signal that coordinates membrane trafficking, actomyosin contraction, and plasma membrane area change. We suggest that cells use plasma membrane tension as a global physical parameter to control cell motility.


Journal of Cell Science | 2012

Finding the weakest link: exploring integrin-mediated mechanical molecular pathways.

Pere Roca-Cusachs; Thomas Iskratsch; Michael P. Sheetz

Summary From the extracellular matrix to the cytoskeleton, a network of molecular links connects cells to their environment. Molecules in this network transmit and detect mechanical forces, which subsequently determine cell behavior and fate. Here, we reconstruct the mechanical pathway followed by these forces. From matrix proteins to actin through integrins and adaptor proteins, we review how forces affect the lifetime of bonds and stretch or alter the conformation of proteins, and how these mechanical changes are converted into biochemical signals in mechanotransduction events. We evaluate which of the proteins in the network can participate in mechanotransduction and which are simply responsible for transmitting forces in a dynamic network. Besides their individual properties, we also analyze how the mechanical responses of a protein are determined by their serial connections from the matrix to actin, their parallel connections in integrin clusters and by the rate at which force is applied to them. All these define mechanical molecular pathways in cells, which are emerging as key regulators of cell function alongside better studied biochemical pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation

Pere Roca-Cusachs; Armando del Rio; Eileen Puklin-Faucher; Nils C. Gauthier; Nicolas Biais; Michael P. Sheetz

Significance Mechanical forces transmitted between a cell and its surrounding extracellular matrix determine functions like proliferation or differentiation, and drive processes in development, tumorigenesis, and wound healing. However, the molecules involved in this force transmission remain unclear. Here we show that forces exerted by cells are transmitted to the extracellular matrix through α-actinin molecules via the transmembrane protein integrins. Furthermore, this transmission enables the growth and maturation of adhesion sites to the matrix, and takes place in competition with another molecule submitted to force, talin. This force regulation mechanism may help us understand the role of force in different biological scenarios. Focal adhesions are mechanosensitive elements that enable mechanical communication between cells and the extracellular matrix. Here, we demonstrate a major mechanosensitive pathway in which α-actinin triggers adhesion maturation by linking integrins to actin in nascent adhesions. We show that depletion of the focal adhesion protein α-actinin enhances force generation in initial adhesions on fibronectin, but impairs mechanotransduction in a subsequent step, preventing adhesion maturation. Expression of an α-actinin fragment containing the integrin binding domain, however, dramatically reduces force generation in depleted cells. This behavior can be explained by a competition between talin (which mediates initial adhesion and force generation) and α-actinin for integrin binding. Indeed, we show in an in vitro assay that talin and α-actinin compete for binding to β3 integrins, but cooperate in binding to β1 integrins. Consistently, we find opposite effects of α-actinin depletion and expression of mutants on substrates that bind β3 integrins (fibronectin and vitronectin) versus substrates that only bind β1 integrins (collagen). We thus suggest that nascent adhesions composed of β3 integrins are initially linked to the actin cytoskeleton by talin, and then α-actinin competes with talin to bind β3 integrins. Force transmitted through α-actinin then triggers adhesion maturation. Once adhesions have matured, α-actinin recruitment correlates with force generation, suggesting that α-actinin is the main link transmitting force between integrins and the cytoskeleton in mature adhesions. Such a multistep process enables cells to adjust forces on matrices, unveiling a role of α-actinin that is different from its well-studied function as an actin cross-linker.


Biophysical Journal | 2008

Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation.

Pere Roca-Cusachs; Jordi Alcaraz; Raimon Sunyer; J. Samitier; Ramon Farré; Daniel Navajas

Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.


Nature Cell Biology | 2015

Control of cell–cell forces and collective cell dynamics by the intercellular adhesome

Elsa Bazellières; Vito Conte; Alberto Elosegui-Artola; Xavier Serra-Picamal; María Bintanel-Morcillo; Pere Roca-Cusachs; José J. Muñoz; Marta Sales-Pardo; Roger Guimerà; Xavier Trepat

Dynamics of epithelial tissues determine key processes in development, tissue healing and cancer invasion. These processes are critically influenced by cell–cell adhesion forces. However, the identity of the proteins that resist and transmit forces at cell–cell junctions remains unclear, and how these proteins control tissue dynamics is largely unknown. Here we provide a systematic study of the interplay between cell–cell adhesion proteins, intercellular forces and epithelial tissue dynamics. We show that collective cellular responses to selective perturbations of the intercellular adhesome conform to three mechanical phenotypes. These phenotypes are controlled by different molecular modules and characterized by distinct relationships between cellular kinematics and intercellular forces. We show that these forces and their rates can be predicted by the concentrations of cadherins and catenins. Unexpectedly, we identified different mechanical roles for P-cadherin and E-cadherin; whereas P-cadherin predicts levels of intercellular force, E-cadherin predicts the rate at which intercellular force builds up.


Nature Cell Biology | 2016

Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity

Alberto Elosegui-Artola; Roger Oria; Yunfeng Chen; Anita Joanna Kosmalska; Carlos Pérez-González; Natalia Castro; Cheng Zhu; Xavier Trepat; Pere Roca-Cusachs

Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin–talin–integrin–fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response.


Nature Materials | 2014

Rigidity sensing and adaptation through regulation of integrin types.

Alberto Elosegui-Artola; Elsa Bazellières; Michael D. Allen; Ion Andreu; Roger Oria; Raimon Sunyer; Jennifer J. Gomm; John Marshall; J. Louise Jones; Xavier Trepat; Pere Roca-Cusachs

Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through either α5β1 integrins (constitutively expressed) or αvβ6 integrins (selectively expressed in cancer and development) adapts force generation, actin flow, and integrin recruitment to rigidities associated with healthy or malignant tissue, respectively. In vitro experiments and theoretical modelling further demonstrate that this behaviour is explained by the different binding and unbinding rates of both integrin types to fibronectin. Moreover, rigidity sensing through differences in integrin bond dynamics applies both when integrins bind separately and when they compete for binding to fibronectin.

Collaboration


Dive into the Pere Roca-Cusachs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramon Farré

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger Oria

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge