Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Periasamy Viswanathamurthi is active.

Publication


Featured researches published by Periasamy Viswanathamurthi.


Carbohydrate Polymers | 2013

Physicochemical studies of glucose, gellan gum, and hydroxypropyl cellulose--inhibition of cast iron corrosion.

Velayutham Rajeswari; Devarayan Kesavan; Mayakrishnan Gopiraman; Periasamy Viswanathamurthi

Glucose, gellan gum, and hydroxypropyl cellulose were studied against the acid corrosion of cast iron by means of weight loss, potentiodynamic polarization, and AC impedance spectroscopy techniques. The inhibition efficiency was found to increase with increasing concentration of the inhibitors. The effect of immersion time and temperature were also studied. The addition of potassium iodide to the corrosion-inhibition system showed both antagonism and synergism toward inhibition efficiency. Polarization studies revealed the mixed-type inhibiting nature of the carbohydrates. The adsorption of inhibitors on the cast iron surface obeys Langmuir adsorption isotherm model, both in presence and absence of KI. Physical interaction between the inhibitor molecules and the iron surface was suggested by the thermochemical parameters, rather than chemical interaction.


Journal of Photochemistry and Photobiology B-biology | 2013

Synthesis, characterization, DNA interaction, antioxidant and anticancer activity of new ruthenium(II) complexes of thiosemicarbazone/semicarbazone bearing 9,10-phenanthrenequinone.

Panneerselvam Anitha; Nataraj Chitrapriya; Yoon Jung Jang; Periasamy Viswanathamurthi

A new series of octahedral ruthenium(II) complexes supported by tridentate ligands derived from phenanthrenequinone and derivatives of thiosemicarbazide/semicarbazide and other co-ligands have been synthesized and characterized. DNA binding experiments indicated that ruthenium(II) complexes can interact with DNA through non-intercalation and the apparent binding constant value (Kb) of [RuCl(CO)(PPh₃)(L₃)] (3) at room temperature was calculated to be 2.27 × 10(3)M(-1). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA. Antioxidative activity proved that the complexes have significant radical scavenging activity against free radicals. Cytotoxic activities showed that the ruthenium(II) complexes exhibited more effective cytotoxic activity against selected cancer cells.


Journal of Photochemistry and Photobiology B-biology | 2014

Synthesis, characterization and crystal structure of cobalt(III) complexes containing 2-acetylpyridine thiosemicarbazones: DNA/protein interaction, radical scavenging and cytotoxic activities

Rajendran Manikandan; Periasamy Viswanathamurthi; Krishnaswamy Velmurugan; Raju Nandhakumar; Takeshi Hashimoto; Akira Endo

The synthesis, structure and biological studies of cobalt(III) complexes supported by NNS-tridentate ligands are reported. Reactions of 2-acetylpyridine N-substituted thiosemicarbazone (HL(1-3)) with [CoCl2(PPh3)2] resulted [Co(L(1-3))2]Cl (1-3) which were characterized by elemental analysis and various spectral studies. The molecular structure of the complex 1 has been determined by single crystal X-ray diffraction studies. In vitro DNA binding studies of complexes 1-3 carried out by fluorescence studies and the results revealed the binding of complexes to DNA via intercalation. The binding constant (Kb) values of complexes 1-3 from fluorescence experiments showed that the complex 3 has greater binding propensity for DNA. The DNA cleavage activity of the complexes 1 and 3 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents. Further, the interactions of the complexes with bovine serum albumin (BSA) were also investigated using fluorescence spectroscopic method, which showed that the complexes 1-3 could bind strongly with BSA. The antioxidant property of the complexes was evaluated to test their free-radical scavenging ability. Furthermore, in vitro cytotoxicity of the complexes against MCF-7 and A431 cell lines was assayed which showed higher activity and efficiently vanished the cancer cells even at low concentrations.


Journal of Photochemistry and Photobiology B-biology | 2014

Ruthenium(III) S-methylisothiosemicarbazone Schiff base complexes bearing PPh3/AsPh3 coligand: Synthesis, structure and biological investigations, including antioxidant, DNA and protein interaction, and in vitro anticancer activities

Govindan Prakash; Rajendran Manikandan; Periasamy Viswanathamurthi; Krishnaswamy Velmurugan; Raju Nandhakumar

New Ru(III) isothiosemicarbazone complexes [RuCl(EPh3)L(1-4)] (E=P or As) were obtained from the reactions between [RuCl3(EPh3)3] and bis(salicylaldehyde)-S-methylisothiosemicarbazone (H2L(1-3))/bis(2-hydroxy-naphthaldehyde)-S-methylisothiosemicarbazone (H2L(4)) ligands. The new complexes were characterized by using elemental analyses and various spectral (UV-Vis, IR, (1)H NMR, FAB-Mass and EPR) methods. The redox properties of the complexes were studied by using cyclic voltammetric method. The new complexes were subjected to various biological investigations such as antioxidant assays involving DPPH radical, hydroxyl radical, nitric oxide radical and hydrogen peroxide, DNA/protein interaction studies and in vitro cytotoxic studies against human breast cancer cell line (MCF-7). New complexes showed excellent free radicals scavenging ability and could bind with DNA via intercalation. Protein binding studies using fluorescence spectroscopy showed that the new complexes could bind strongly with bovine serum albumin (BSA). Photo cleavage experiments using DNA of E-coli bacterium exhibited the DNA cleavage ability of the complexes. Further, the in vitro anticancer activity studies on the new complexes against MCF-7 cell line exhibited the ability of Ru(III) isothiosemicarbazone complexes to suppress the development of malignant neoplastic disease cells.


Inorganic chemistry frontiers | 2015

Unprecedented formation of organo-ruthenium(II) complexes containing 2-hydroxy-1-naphthaldehyde S-benzyldithiocarbazate: synthesis, X-ray crystal structure, DFT study and their biological activities in vitro

Paranthaman Vijayan; Periasamy Viswanathamurthi; P. Sugumar; M. N. Ponnuswamy; Manickam Dakshinamoorthi Balakumaran; P.T. Kalaichelvan; Krishnaswamy Velmurugan; Raju Nandhakumar; Ray J. Butcher

As a contribution to the development of new ruthenium complexes with pharmacologically interesting properties, two new mononuclear ruthenium(II) complexes of the general formula [Ru(H-Nap-sbdtc)Cl(CO)(EPh3)2] (1 & 2) [H-(Nap-sbdtc) = 2-hydroxy-1-naphthaldehyde-S-benzyl-dithiocarbazate; E = P or As] were synthesized. The new ruthenium(II) carbonyl complexes are remarkably stable and were obtained in good yields. Their identities have been established by satisfactory elemental analyses and various spectroscopic techniques (IR, UV/visible, (1H, 13C, and 31P) NMR, and ESI-MS). For a better definition, the molecular structure of complexes 1 and 2 has been determined by X-ray crystallography, which confirms the coordination mode of the ligand and reveals a distorted octahedral geometry around the ruthenium ion. The molecular structure of complexes 1 and 2 has been optimized by DFT calculations. The binding affinity and binding mode of the ligand and their ruthenium(II) complexes toward calf thymus CT-DNA were determined by the emission spectral method, the fluorescent indicator displacement (FID) assay and viscosity measurements. Further, the interactions of the ligand and their complexes 1 and 2 with bovine serum albumin (BSA) were investigated using UV-Vis and fluorescence spectroscopic methods. Absorption and emission spectral studies indicate that complexes 1 and 2 interact with CT-DNA and BSA protein more strongly than their parent ligand. In addition, the interactions of the complexes with DNA/BSA were followed by electrophoretic mobility spectrometry studies and the results show that these complexes exhibited good cleavage properties. In vitro anticancer activity has been scrutinized by the MTT assay, acridine orange/ethidium bromide (AO/EB) and diamidino-2-phenylindole (DAPI) staining against the human cervical cancer (HeLa) cell line.


RSC Advances | 2013

Evaluation of DNA-binding, radical scavenging and cytotoxic activity of five coordinated Cd(II) complexes containing 2-acetylpyridine-N4-substituted thiosemicarbazone

Rajendran Manikandan; Nataraj Chitrapriya; Yoon Jung Jang; Periasamy Viswanathamurthi

A series of new five coordinated Cd(II) complexes of the type [Cd(Ln)Cl2] (n = 1–3) have been isolated and characterized using analytical, spectral and structural methods. The single crystal X-ray structure of one of the complexes [Cd(L2)Cl2] (2) has been determined and a distorted square pyramidal geometry has been found, in which Cd(II) is coordinated with two nitrogens, one sulfur and two chlorine atoms. The interactions of the complexes with calf thymus DNA (CT-DNA) have been explored by absorption, competitive, thermal denaturation and viscometric methods, which revealed that the compounds could interact with CT-DNA through groove binding. Investigation of the antioxidant properties showed that the Cd(II) complexes have a strong radical scavenging tendency against DPPH˙, OH˙ and NO˙ radicals. Further, the cytotoxic effect of the compounds examined on a human breast cancer cell line (MCF-7) showed that the complexes exhibited substantial cytotoxic activity.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013

Ruthenium(II) carbonyl complexes containing pyridine carboxamide ligands and PPh3/AsPh3/Py coligands: Synthesis, spectral characterization, catalytic and antioxidant studies

Periasamy Viswanathamurthi

New ruthenium(II) carbonyl complexes bearing pyridine carboxamide and triphenylphosphine/triphenylarsine/pyridine have been prepared by direct reaction of ruthenium(II) precursors with some pyridine carboxamide ligands, N,N-bis(2-pyridinecarboxamide)-1,2-ethane (H(2)L(1)), N,N-bis(2-pyridinecarboxamide)-1,2-benzene (H(2)L(2)) and N,N-bis(2-pyridinecarboxamide)-trans-1,2-cyclohexane (H(2)L(3)). The organic ligands offering two N(amide) and two N(pyridine) donor sites to the metal centre. They have been characterized by elemental analyses, FT-IR, UV-Visible, NMR ((1)H, (13)C and (31)P) and ESI-MS techniques. Based on the above data, an octahedral structure has been assigned for all the complexes. The catalytic efficiency of the complexes in transfer hydrogenation of ketones in the presence of iPrOH/KOH and N-alkylation of amine in the presence of tBuOK was examined. Furthermore, the antioxidant activity of the ligands and its ruthenium(II) complexes were determined by DPPH radical, nitric oxide radical, hydroxyl radical and hydrogen peroxide scavenging methods, which indicates that the ruthenium(II) complexes exhibit more effective antioxidant activity than the ligands alone.


Journal of Coordination Chemistry | 2010

Spectral, catalytic, and antifungal studies of ruthenium(II) chalcone complexes

M. Muthukumar; Periasamy Viswanathamurthi

Reactions of [RuHCl(CO)(B)(EPh3)2] (B = EPh3 or Py; E = P or As) and chalcones in benzene with equal molar ratio led to the formation of new complexes of the type [RuCl(CO)(EPh3)(B)(L1−4)] (B = PPh3, AsPh3 or Py; E = P or As; L = chalcone). The new complexes have been characterized by analytical and spectroscopic (IR-, electronic, 1H-, 31P-, and 13C-NMR) data. Based on these data, an octahedral structure has been assigned for all the complexes. The chalcones are monobasic bidentate (O,O) donors and coordinate to ruthenium via phenolic and carbonyl oxygen. The new complexes exhibit efficient catalytic activity for the transfer hydrogenation of carbonyl compounds. Antifungal properties of the ligands and their complexes have been examined and compared with standard Bavistin.


RSC Advances | 2015

Ruthenium(II) complexes containing a phosphine-functionalized thiosemicarbazone ligand: synthesis, structures and catalytic C–N bond formation reactions via N-alkylation

Govindan Prakash; Sellappan Selvamurugan; Periasamy Viswanathamurthi; J.G. Małecki; Wolfgang Linert; Alexey N. Gusev

A series of ruthenium(II) complexes incorporating a thiosemicarbazone chelate tethered with a diphenylphosphine pendant have been studied. Thus, [(PNS-Et)RuCl(CO)(PPh3)] (1), [N,S-(PNS-Et)RuH(CO)(PPh3)2] (2) and [(PNS-Et)RuCl(PPh3)] (3) were synthesized by reactions of various RuII precursors with 2-(2-(diphenylphosphino)benzylidene)-N-ethylthiosemicarbazone (PNS-Et). However, complexation of PNS-Et with an equimolar amount of [RuCl2(dmso)4] resulted in two different entities [(PNS-Et)RuCl(dmso)2] (4) and [(PNS-Et)2Ru] (5) with different structural features in a single reaction. All the RuII complexes have been characterized by analytical and various spectroscopic techniques. Compounds 1–5 were recrystallized, and the X-ray crystal structures have been reported for 1, 2 and 5. In the complexes 1 and 3–5 the ligand coordinated in a tridentate monobasic fashion by forming PNS five- and six-membered rings, whereas in 2, the ligand coordinated in a bidentate monobasic fashion by forming a strained NS four-membered ring. Furthermore, compounds 1–5 showed catalytic activity in N-alkylation of heteroaromatic amines. Notably, complexes 1–3 were found to be very efficient catalysts toward N-alkylation of a wide range of heterocyclic amines with alcohols. In the presence of a catalytic amount of 2 with 50 mol% of KOH, N1,C5-dialkylation of 4-phenylthiazol-2-amine has been investigated. Reaction of in situ generated aldehyde with amine yields the N1,C5-dialkylated products through the hydride ion transformation from alcohol. Complexes 1–3 also catalyzed a variety of coupling reactions of benzyl alcohols and sulfonamides, which were realized often with 99% isolated yields. Advantageously, only one equivalent of the primary alcohol was consumed in the process.


Journal of Coordination Chemistry | 2013

Synthesis, spectral characterization, antioxidant, anticancer in vitro, and DNA cleavage studies of a series of ruthenium(II) complexes bearing Schiff base ligands

Sellappan Selvamurugan; Periasamy Viswanathamurthi; Akira Endo; Takeshi Hashimoto; Karuppannan Natarajan

Ruthenium(II) complexes with 2-acetylpyridine-thiosemicarbazones (L1–L4) were synthesized and characterized by analytical and spectral (FT-IR, UV–vis, NMR [1H, 13C and 31P], and ESI-Mass) methods. Systematic biological investigations, free radical scavenging, anticancer activities, and DNA cleavage studies, were carried out for the complexes. Antioxidant studies showed that the complexes have significant antioxidant activity against DPPH, hydroxyl, nitric oxide radicals and hydrogen peroxide assay. The in vitro cytotoxicity of complexes against breast cancer (MCF-7) cell line was assayed showing high cytotoxicity with low IC50 values indicating their efficiency in destroying the cancer cells even at very low concentrations. The DNA cleavage studies showed that the complexes efficiently cleaved DNA.

Collaboration


Dive into the Periasamy Viswanathamurthi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.G. Małecki

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge