Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pericles Pilidis is active.

Publication


Featured researches published by Pericles Pilidis.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2011

Assessment of Future Aero-engine Designs With Intercooled and Intercooled Recuperated Cores

Konstantinos Kyprianidis; Tomas Grönstedt; S.O.T. Ogaji; Pericles Pilidis; Riti Singh

Reduction in CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, as well as the reduction in engine nacelle drag and weight. Conventional turbofan designs, however, that reduce CO2 emissions—such as increased overall pressure ratio designs—can increase the production of NOx emissions. In the present work, funded by the European Framework 6 collaborative project NEW Aero engine Core concepts (NEWAC), an aero-engine multidisciplinary design tool, Techno-economic, Environmental, and Risk Assessment for 2020 (TERA2020), has been utilized to study the potential benefits from introducing heat-exchanged cores in future turbofan engine designs. The tool comprises of various modules covering a wide range of disciplines: engine performance, engine aerodynamic and mechanical design, aircraft design and performance, emissions prediction and environmental impact, engine and airframe noise, as well as production, maintenance and direct operating costs. Fundamental performance differences between heat-exchanged cores and a conventional core are discussed and quantified. Cycle limitations imposed by mechanical considerations, operational limitations and emissions legislation are also discussed. The research work presented in this paper concludes with a full assessment at aircraft system level that reveals the significant potential performance benefits for the intercooled and intercooled recuperated cycles. An intercooled core can be designed for a significantly higher overall pressure ratio and with reduced cooling air requirements, providing a higher thermal efficiency than could otherwise be practically achieved with a conventional core. Variable geometry can be implemented to optimize the use of the intercooler for a given flight mission. An intercooled recuperated core can provide high thermal efficiency at low overall pressure ratio values and also benefit significantly from the introduction of a variable geometry low pressure turbine. The necessity of introducing novel lean-burn combustion technology to reduce NOx emissions at cruise as well as for the landing and take-off cycle, is demonstrated for both heat-exchanged cores and conventional designs. Significant benefits in terms of NOx reduction are predicted from the introduction of a variable geometry low pressure turbine in an intercooled core with lean-burn combustion technology.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 1997

A Semiclosed-Cycle Gas Turbine With Carbon Dioxide–Argon as Working Fluid

I. Ulizar; Pericles Pilidis

This paper describes the performance analysis of a semiclosed-cycle gas turbine. The working fluid is carbon dioxide and the fuel is low heating value gas synthesized from coal. The objective of the machine is to produce clean electricity with the smallest efficiency penalty. First, the thermodynamic properties of the gases in the cycle were obtained as a function of temperature and pressure. Then two performance simulation codes were developed. These have the ability of simulating different configurations of open, closed, and semiclosed cycles. The first code was used for cycle optimization and the second for off-design studies. The design and off-design performances of the machine are predicted. The production of clean electricity will be at the expense of a lower efficiency compared with current equipment. Finally, some critical issues for the development of such a gas turbine are identified.


Journal of Energy Resources Technology-transactions of The Asme | 2001

Comparison of Externally Fired and Internal Combustion Gas Turbines Using Biomass Fuel

Sandro B. Ferreira; Pericles Pilidis

There is a difference of opinion regarding the relative merits of gas turbines using biomass fuels. Some engineers believe that the internal combustion gas turbine coupled to a gasifier will give a higher efficiency than the externally fired gas turbine using pretreated biomass that is not gasified. Others believe the opposite. In this paper, a comparison between these schemes is made, within the framework of the Brazilian perspective. The exergetic analysis of four cycles is described. The first cycle is externally fired (EFGT), the second uses gasified biomass as fuel (BIG/GT), each of them with a combined cycle as a variant (EFGT/CC and BIG/GTCC). These four are then compared to the natural gas turbine cycles (NGT and NGT/CC) in order to evaluate the thermodynamic cost of using biomass. The comparison is carried out in terms of thermal efficiency and in terms of exergetic efficiency and exergy destruction in the main components. The present analysis shows that the EFGT is quite promising. When compared to the NGT cycle, the EFGT gas turbine shows poor efficiency, though this parameter practically equals that of the BIG/GT cycle. The use of a bottoming steam cycle changes the figures, and the EFGT/ CC-due to its higher exhaust temperature-results in high efficiency compared to the BIG/GTCC. Its lower initial and maintenance cost may be an important attraction.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2006

An Adaptation Approach for Gas Turbine Design-Point Performance Simulation

Y. G. Li; Pericles Pilidis; Mike Newby

Accurate simulation and understanding of gas turbine performance is very useful for gas turbine users. Such a simulation and performance analysis must start from a design point. When some of the engine component parameters for an existing engine are not available, they must be estimated in order that the performance analysis can be carried out. However, the initially simulated design-point performance of the engine using estimated engine component parameters may give a result that is different from the actual measured performance. This difference may be reduced with better estimation of these unknown component parameters. However, this can become a difficult task for performance engineers, let alone those without enough engine performance knowledge and experience, when the number of design-point component parameters and the number of measurable/target performance parameters become large. In this paper, a gas turbine design-point performance adaptation approach has been developed to best estimate the unknown design-point component parameters and match the available design-point engine measurable/target performance. In the approach, the initially unknown component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, air mass flow rate, cooling flows, bypass ratio, etc. The engine target (measurable) performance parameters may be thrust and specific fuel consumption for aero engines, shaft power and thermal efficiency for industrial engines, gas path pressures and temperatures, etc. To select, initially, the design point component parameters, a bar chart has been used to analyze the sensitivity of the engine target performance parameters to the design-point component parameters. The developed adaptation approach has been applied to a design-point performance matching problem of an industrial gas turbine engine GE LM2500+ operating in Manx Electricity Authority (MEA), UK. The application shows that the adaptation approach is very effective and fast to produce a set of design-point component parameters of a model engine that matches the actual engine performance very well. Theoretically, the developed techniques can be applied to other gas turbine engines.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2006

A Fully Integrated Approach to Component Zooming Using Computational Fluid Dynamics

Vassilios Pachidis; Pericles Pilidis; Fabien Talhouarn; A. I. Kalfas; Ioannis Templalexis

Background . This study focuses on a simulation strategy that will allow the performance characteristics of an isolated gas turbine engine component, resolved from a detailed, high-fidelity analysis, to be transferred to an engine system analysis carried out at a lower level of resolution. This work will enable component-level, complex physical processes to be captured and analyzed in the context of the whole engine performance, at an affordable computing resource and time. Approach . The technique described in this paper utilizes an object-oriented, zero-dimensional (0D) gas turbine modeling and performance simulation system and a high-fidelity, three-dimensional (3D) computational fluid dynamics (CFD) component model. The work investigates relative changes in the simulated engine performance after coupling the 3D CFD component to the 0D engine analysis system. For the purposes of this preliminary investigation, the high-fidelity component communicates with the lower fidelity cycle via an iterative, semi-manual process for the determination of the correct operating point. This technique has the potential to become fully automated, can be applied to all engine components, and does not involve the generation of a component characteristic map. Results . This paper demonstrates the potentials of the “fully integrated” approach to component zooming by using a 3D CFD intake model of a high bypass ratio turbofan as a case study. The CFD model is based on the geometry of the intake of the CFM56-5B2 engine. The high-fidelity model can fully define the characteristic of the intake at several operating condition and is subsequently used in the 0D cycle analysis to provide a more accurate, physics-based estimate of intake performance (i.e., pressure recovery) and hence, engine performance, replacing the default, empirical values. A detailed comparison between the baseline engine performance (empirical pressure recovery) and the engine performance obtained after using the coupled, high-fidelity component is presented in this paper. The analysis carried out by this study demonstrates relative changes in the simulated engine performance larger than 1%. Conclusions . This investigation proves the value of the simulation strategy followed in this paper and completely justifies (i) the extra computational effort required for a more automatic link between the high-fidelity component and the 0D cycle, and (ii) the extra time and effort that is usually required to create and run a 3D CFD engine component, especially in those cases where more accurate, high-fidelity engine performance simulation is required.


Volume 2: Controls, Diagnostics and Instrumentation; Cycle Innovations; Electric Power | 2008

EVA: A Tool for Environmental Assessment of Novel Propulsion Cycles

Konstantinos Kyprianidis; Ramón F. Colmenares Quintero; Daniele Pascovici; S.O.T. Ogaji; Pericles Pilidis; A. I. Kalfas

This paper presents the development of a tool for EnVironmental Assessment (EVA) of novel propulsion cycles implementing the Technoeconomical Environmental and Risk Analysis (TERA) approach. For nearly 3 decades emissions certification and legislation has been mainly focused on the landing and take-off cycle. Exhaust emissions measurements of NOx, CO and unburned hydrocarbons are taken at Sea Level Static (SLS) conditions for 4 different power settings (idle, descent, approach and take-off) and are consecutively used for calculating the total emissions during the ICAO landing and take-off cycle. With the global warming issue becoming ever more important, stringent emissions legislation is soon to follow, focusing on all flight phases of an aircraft. Unfortunately, emissions measurements at altitude are either extremely expensive, as in the case of altitude test facility measurements, or unrealistic, as in the case of direct in flight measurements. Compensating for these difficulties, various existing methods can be used to estimate emissions at altitude from ground measurements. Such methods, however, are of limited help when it comes to assessing novel propulsion cycles or existing engine configurations with no SLS measurements available. The authors are proposing a simple and fast method for the calculation of SLS emissions, mainly implementing ICAO exhaust emissions data, corrections for combustor inlet conditions and technology factors. With the SLS emissions estimated, existing methods may be implemented to calculate emissions at altitude. The tool developed couples emissions predictions and environmental models together with engine and aircraft performance models in order to estimate the total emissions and Global Warming Potential of novel engine designs during all flight phases (i.e. the whole flight cycle). The engine performance module stands in the center of all information exchange. In this study, EVA and the described emissions prediction methodology have been used for the preliminary design analysis of three spool high bypass ratio turbofan engines. The capability of EVA to radically explore the design space available in novel engine configurations, while accounting for fuel burn and global warming potential during the whole flight cycle of an aircraft, is illustrated.


Aeronautical Journal | 2007

Towards a full two dimensional gas turbine performance simulator

Vassilios Pachidis; Pericles Pilidis; Luca Marinai; Ioannis Templalexis

In commercially available gas turbine performance simulation tools, individual engine components are typically represented with non-dimensional maps of experimental or default data. In those cases where actual component characteristics are not available and default characteristics are used instead, conventional tools can deviate substantially at off-design and transient conditions. Similarly, when real component characteristics are available, conventional engine cycle simulation tools can not predict the performance of the engine at other than nominal conditions satisfactorily, or account for the impact of changes in component geometry. This study looked into the full integration of two-dimensional streamline curvature component models with a low fidelity cycle program. Firstly, the obtained engine performance was compared against the one calculated based on default component characteristics. As a second case study, a range of flight Mach numbers and angles of attack were examined together with the effect of three different intake lip geometries on the performance of a notional, two-spool, low-bypass ratio, military engine. Two-dimensional models were used in the engine cycle analysis to provide a more accurate, physics- and geometry-based estimate of intake and fan performances. The analysis carried out by this study demonstrated relative changes in the predicted engine performance larger than 1%. For briefness, representative results are presented and discussed in this paper for one flight Mach number and angle of attack setting. More importantly, this research effort established the necessary methodology and technology required towards a full, two-dimensional engine cycle analysis at an affordable computational resource in the very short term.


Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2001

An insight on intercooling and reheat gas turbine cycles

M. A. da Cunha Alves; H. F. de Franca Mendes Carneiro; João Roberto Barbosa; L. E. Travieso; Pericles Pilidis; K. W. Ramsden

Abstract The current drive for high efficiencies and low emissions has resulted in the examination and development of advanced power systems based on complex gas turbine cycles. Reheat and intercooling are two such schemes. The basic objective of introducing intercooling and reheat is to sources of loss in a gas turbine engine are those arising from the turbomachinery and the need to cool the turbine blades. In this paper the concepts of intercooling and reheat for gas turbines are assessed, in a systematic way, using a model that includes the above losses in order to evaluate their effects on the engine performance. Also examined is the choice of the position where intercooling or reheat is implemented which can have a large effect on the engine output. A comparison is made with the simple cycle and it is shown that these schemes show much promise. Some of the development difficulties are also outlined. Intercooling promises large improvements in efficiency over the simple cycle, especially at high pressure ratios. Reheat on the other hand is much more suited to combined cycles.


ASME Turbo Expo 2000: Power for Land, Sea, and Air | 2000

Introduction of Intercooling in a High Bypass Jet Engine

Tilemachos Papadopoulos; Pericles Pilidis

In this paper an exercise to introduce intercooling in a high bypass civil turbofan is outlined. The engine selected as the basic propulsion system is a three spool high bypass turbofan with a bypass ratio 6.4. The air leaving the IP compressor is cooled in the bypass duct prior to entering the HP compressor.This preliminary investigation appears to indicate that the main benefit to be gained is an increase in the net thrust from the engine without increasing the turbine inlet temperature. To keep engine diameter constant, the bypass ratio has not been changed. This results in a requirement to significantly increase the pressure ratio to reduce the SFC levels to an acceptable value.A sizing exercise has been carried out to understand the weight and volume penalties imposed by heat pipe intercooling hardware. The preliminary sizing exercise indicates that the weight penalty is very large. The performance of the aircraft using the intercooled engines is also investigated and some improvements in performance are predicted.Overall this investigation is considered to be positive so that further investigations should be considered. It appears that an intercooled engine can produce a somewhat higher thrust at a given turbine entry temperature at similar SFC levels of current engines, or, if a small increase in SFC is acceptable, the increase in thrust is quite important.Copyright


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2006

Gas Turbine Compressor Washing: Historical Developments, Trends and Main Design Parameters for Online Systems

Friederike C. Mund; Pericles Pilidis

By being exposed to atmospheric conditions gas turbines are inevitably subjected to sources of fouling. The resulting degradation can be partially recovered by cleaning the compressor. Based on open literature and patents, the different approaches leading to the most advanced method of compressor online washing have been compiled. The origins of online washing and the development trends over the decades are outlined, and the current systems are categorized. The introduction of system categories has been justified by a field survey. Additionally, the main design parameters of online washing systems are summarized.

Collaboration


Dive into the Pericles Pilidis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. I. Kalfas

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge