Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pernilla Lagerbäck is active.

Publication


Featured researches published by Pernilla Lagerbäck.


Antimicrobial Agents and Chemotherapy | 2014

Evaluation of Double- and Triple-Antibiotic Combinations for VIM- and NDM-Producing Klebsiella pneumoniae by In Vitro Time-Kill Experiments

Thomas Tängdén; Rachel A. Hickman; Petter Forsberg; Pernilla Lagerbäck; Christian G. Giske; Otto Cars

ABSTRACT Combination therapy is recommended for infections with carbapenemase-producing Klebsiella pneumoniae. However, limited data exist on which antibiotic combinations are the most effective. The aim of this study was to find effective antibiotic combinations against metallo-beta-lactamase-producing K. pneumoniae (MBL-KP). Two VIM- and two NDM-producing K. pneumoniae strains, all susceptible to colistin, were exposed to antibiotics at clinically relevant static concentrations during 24-h time-kill experiments. Double- and triple-antibiotic combinations of aztreonam, ciprofloxacin, colistin, daptomycin, fosfomycin, meropenem, rifampin, telavancin, tigecycline, and vancomycin were used. Synergy was defined as a ≥2 log10 decrease in CFU/ml between the combination and its most active drug after 24 h, and bactericidal effect was defined as a ≥3 log10 decrease in CFU/ml after 24 h compared with the starting inoculum. Synergistic or bactericidal activity was demonstrated for aztreonam, fosfomycin, meropenem, and rifampin in double-antibiotic combinations with colistin and also for aztreonam, fosfomycin, and rifampin in triple-antibiotic combinations with meropenem and colistin. Overall, the combination of rifampin-meropenem-colistin was the most effective regimen, demonstrating synergistic and bactericidal effects against all four strains. Meropenem-colistin, meropenem-fosfomycin, and tigecycline-colistin combinations were not bactericidal against the strains used. The findings of this and other studies indicate that there is great potential of antibiotic combinations against carbapenemase-producing K. pneumoniae. However, our results deviate to some extent from those of previous studies, which might be because most studies to date have included KPC-producing rather than MBL-producing strains. More studies addressing MBL-KP are needed.


Journal of Antimicrobial Chemotherapy | 2015

A mechanism-based pharmacokinetic/pharmacodynamic model allows prediction of antibiotic killing from MIC values for WT and mutants

David D. Khan; Pernilla Lagerbäck; Sha Cao; Ulrika Lustig; Elisabet I. Nielsen; Otto Cars; Diarmaid Hughes; Dan I. Andersson; Lena E. Friberg

OBJECTIVES In silico pharmacokinetic/pharmacodynamic (PK/PD) models can be developed based on data from in vitro time-kill experiments and can provide valuable information to guide dosing of antibiotics. The aim was to develop a mechanism-based in silico model that can describe in vitro time-kill experiments of Escherichia coli MG1655 WT and six isogenic mutants exposed to ciprofloxacin and to identify relationships that may be used to simplify future characterizations in a similar setting. METHODS In this study, we developed a mechanism-based PK/PD model describing killing kinetics for E. coli following exposure to ciprofloxacin. WT and six well-characterized mutants, with one to four clinically relevant resistance mutations each, were exposed to a wide range of static ciprofloxacin concentrations. RESULTS The developed model includes susceptible growing bacteria, less susceptible (pre-existing resistant) growing bacteria, non-susceptible non-growing bacteria and non-colony-forming non-growing bacteria. The non-colony-forming state was likely due to formation of filaments and was needed to describe data close to the MIC. A common model structure with different potency for bacterial killing (EC50) for each strain successfully characterized the time-kill curves for both WT and the six E. coli mutants. CONCLUSIONS The model-derived mutant-specific EC50 estimates were highly correlated (r(2) = 0.99) with the experimentally determined MICs, implying that the in vitro time-kill profile of a mutant strain is reasonably well predictable by the MIC alone based on the model.


Antimicrobial Agents and Chemotherapy | 2017

Colistin is Extensively Lost during Standard in Vitro Experimental Conditions

Matti Karvanen; Christer Malmberg; Pernilla Lagerbäck; Lena E. Friberg; Otto Cars

ABSTRACT Colistin adheres to a range of materials, including plastics in labware. The loss caused by adhesion influences an array of methods detrimentally, including MIC assays and in vitro time-kill experiments. The aim of this study was to characterize the extent and time course of colistin loss in different types of laboratory materials during a simulated time-kill experiment without bacteria or plasma proteins present. Three types of commonly used large test tubes, i.e., soda-lime glass, polypropylene, and polystyrene, were studied, as well as two different polystyrene microplates and low-protein-binding microtubes. The tested concentration range was 0.125 to 8 mg/liter colistin base. Exponential one-phase and two-phase functions were fitted to the data, and the adsorption of colistin to the materials was modeled with the Langmuir adsorption model. In the large test tubes, the measured start concentrations ranged between 44 and 102% of the expected values, and after 24 h, the concentrations ranged between 8 and 90%. The half-lives of colistin loss were 0.9 to 12 h. The maximum binding capacities of the three materials ranged between 0.4 and 1.1 μg/cm2, and the equilibrium constants ranged between 0.10 and 0.54 ml/μg. The low-protein-binding microtubes showed start concentrations between 63 and 99% and concentrations at 24 h of between 59 and 90%. In one of the microplates, the start concentrations were below the lower limit of quantification at worst. In conclusion, to minimize the effect of colistin loss due to adsorption, our study indicates that low-protein-binding polypropylene should be used when possible for measuring colistin concentrations in experimental settings, and the results discourage the use of polystyrene. Furthermore, when diluting colistin in protein-free media, the number of dilution steps should be minimized.


Journal of Antimicrobial Chemotherapy | 2016

Evaluation of antibacterial activities of colistin, rifampicin and meropenem combinations against NDM-1-producing Klebsiella pneumoniae in 24 h in vitro time–kill experiments

Pernilla Lagerbäck; Wei W. T. Khine; Christian G. Giske; Thomas Tängdén

OBJECTIVES To investigate the activity of colistin alone or in double and triple combination with rifampicin and meropenem against NDM-1-producing Klebsiella pneumoniae. METHODS Eight isolates of NDM-1-producing K. pneumoniae were exposed to clinically relevant antibiotic concentrations in 24 h time-kill experiments. Three colistin concentrations were used for two of the strains. Resistance development was assessed with population analysis and sequencing of the mgrB and pmrB genes. RESULTS Initial killing was achieved with colistin alone, but with considerable regrowth at 24 h. Combinations including colistin and rifampicin were bacteriostatic or bactericidal against all strains. Colistin plus meropenem was bactericidal against one strain, but, overall, meropenem showed little additive effects. Higher concentrations of colistin did not enhance antibacterial activity. Resistant populations and deletion or mutations in the mgrB and pmrB genes were frequently detected in endpoint samples after exposure to colistin alone. CONCLUSIONS Based on the results of this and previous studies, the combination of colistin and rifampicin seems promising and should be further explored in vivo and considered for clinical evaluation. Meropenem seems less useful in the treatment of infections caused by high-level carbapenem-resistant NDM-1-producing K. pneumoniae. Higher colistin concentrations did not result in significantly better activity, suggesting that combination therapy might be superior to monotherapy also when colistin is prescribed using high-dose regimens in accordance with current recommendations.


Journal of Bacteriology | 2008

Amino Acid Residues in the GIY-YIG Endonuclease II of Phage T4 Affecting Sequence Recognition and Binding as Well as Catalysis

Pernilla Lagerbäck; Karin Carlson

Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) similar to those described for I-TevI and UvrC; in addition, these residues were found to be important for substrate recognition and binding. The conserved glycine (G49) and arginine (R57) were essential for normal sequence recognition. Our results are in agreement with a role for these residues in forming the DNA-binding surface and exposing the substrate scissile bond at the active site. The conserved asparagine (N130) and an adjacent proline (P127) likely contribute to positioning the catalytic domain correctly. Enzymes in the EndoII subfamily of GIY-YIG endonucleases share a strongly conserved middle region (MR, residues 72 to 93, likely helical and possibly substituting for heterologous helices in I-TevI and UvrC) and a less strongly conserved N-terminal region (residues 12 to 24). Most of the conserved residues in these two regions appeared to contribute to binding strength without affecting the mode of substrate binding at the catalytic surface. EndoII K76, part of a conserved NUMOD3 DNA-binding motif of homing endonucleases found to overlap the MR, affected both sequence recognition and catalysis, suggesting a more direct involvement in positioning the substrate. Our data thus suggest roles for the MR and residues conserved in GIY-YIG enzymes in recognizing and binding the substrate.


Molecular Microbiology | 2004

Bacteriophage T4 endonuclease II: concerted single-strand nicks yield double-strand cleavage

Karin Carlson; Pernilla Lagerbäck; Anna-Chey Nyström

In vivo, endonuclease II (EndoII) of coliphage T4 cleaves sites with conserved sequence elements (CSEs) to both the left and the right of the cleaved bonds, 16 bp altogether with some variability tolerated. In vitro, however, single‐strand nicks in the lower strand predominate at sites containing only the left‐side CSE that determines the precise position of lower strand nicks. Upper strand nick positions vary both in vivo and in vitro. A 24 bp substrate was nicked with the same precision as in longer substrates, showing that the conserved sequence suffices for precise nicking by EndoII. Using DNA ligase in vitro, we found that EndoII nicked both strands simultaneously at an in vivo‐favoured site but not at an in vitro‐favoured site. This indicates that the right‐side CSE at in vivo‐favoured sites is important for simultaneous nicking of both strands, generating double‐strand cleavage. Separate analysis of the two strands following in vitro digestion at two in vitro‐favoured sites showed that EndoII nicked the lower strand about 1.5‐fold faster than the upper strand. In addition, the upper and lower strands were nicked independently of each other, seldom resulting in double‐strand cleavage. Thus, cleavage by EndoII is the fortuitous outcome of two separate nicking events.


Journal of Molecular Biology | 2010

Structure of Bacteriophage T4 Endonuclease II Mutant E118A, a Tetrameric Giy-Yig Enzyme.

C. Evalena Andersson; Pernilla Lagerbäck; Karin Carlson

Coliphage T4 endonuclease II (EndoII), encoded by gene denA, is a small (16 kDa, 136 aa) enzyme belonging to the GIY-YIG family of endonucleases, which lacks a C-terminal domain corresponding to that providing most of the binding energy in the structurally characterized GIY-YIG endonucleases, I-TevI and UvrC. In vivo, it is involved in degradation of host DNA, permitting scavenging of host-derived nucleotides for phage DNA synthesis. EndoII primarily catalyzes single-stranded nicking of DNA; 5- to 10-fold less frequently double-stranded breaks are produced. The Glu118Ala mutant of EndoII was crystallized in space group P2(1) with four monomers in the asymmetric unit. The fold of the EndoII monomer is similar to that of the catalytic domains of UvrC and I-TevI. In contrast to these enzymes, EndoII forms a striking X-shaped tetrameric structure composed as a dimer of dimers, with a protruding hairpin domain not present in UvrC or I-TevI providing most of the dimerization and tetramerization interfaces. A bound phosphate ion in one of the four active sites of EndoII likely mimics the scissile phosphate in a true substrate complex. In silico docking experiments showed that a protruding loop containing a nuclease-associated modular domain 3 element is likely to be involved in substrate binding, as well as residues forming a separate nucleic acid binding surface adjacent to the active site. The positioning of these sites within the EndoII primary dimer suggests that the substrate would bind to a primary EndoII dimer diagonally over the active sites, requiring significant distortion of the enzyme or the substrate DNA, or both, for simultaneous nicking of both DNA strands. The scarcity of potential nucleic acid binding residues between the active sites indicates that EndoII may bind its substrate inefficiently across the two sites in the dimer, offering a plausible explanation for the catalytic preponderance of single-strand nicks. Mutations analyzed in earlier functional studies are discussed in their structural context.


Journal of Microbiological Methods | 2017

Evaluation of automated time-lapse microscopy for assessment of in vitro activity of antibiotics

Wanchana Ungphakorn; Christer Malmberg; Pernilla Lagerbäck; Otto Cars; Elisabet I. Nielsen; Thomas Tängdén

This study aimed to evaluate the potential of a new time-lapse microscopy based method (oCelloScope) to efficiently assess the in vitro antibacterial effects of antibiotics. Two E. coli and one P. aeruginosa strain were exposed to ciprofloxacin, colistin, ertapenem and meropenem in 24-h experiments. Background corrected absorption (BCA) derived from the oCelloScope was used to detect bacterial growth. The data obtained with the oCelloScope were compared with those of the automated Bioscreen C method and standard time-kill experiments and a good agreement in results was observed during 6-24h of experiments. Viable counts obtained at 1, 4, 6 and 24h during oCelloScope and Bioscreen C experiments were well correlated with the corresponding BCA and optical density (OD) data. Initial antibacterial effects during the first 6h of experiments were difficult to detect with the automated methods due to their high detection limits (approximately 105CFU/mL for oCelloScope and 107CFU/mL for Bioscreen C), the inability to distinguish between live and dead bacteria and early morphological changes of bacteria during exposure to ciprofloxacin, ertapenem and meropenem. Regrowth was more frequently detected in time-kill experiments, possibly related to the larger working volume with an increased risk of pre-existing or emerging resistance. In comparison with Bioscreen C, the oCelloScope provided additional information on bacterial growth dynamics in the range of 105 to 107CFU/mL and morphological features. In conclusion, the oCelloScope would be suitable for detection of in vitro effects of antibiotics, especially when a large number of regimens need to be tested.


PLOS ONE | 2016

A Novel Microfluidic Assay for Rapid Phenotypic Antibiotic Susceptibility Testing of Bacteria Detected in Clinical Blood Cultures

Christer Malmberg; Pikkei Yuen; Johanna Spaak; Otto Cars; Thomas Tängdén; Pernilla Lagerbäck

Background Appropriate antibiotic therapy is critical in the management of severe sepsis and septic shock to reduce mortality, morbidity and health costs. New methods for rapid antibiotic susceptibility testing are needed because of increasing resistance rates to standard treatment. Aims The purpose of this study was to evaluate the performance of a novel microfluidic method and the potential to directly apply this method on positive blood cultures. Methods Minimum inhibitory concentrations (MICs) of ciprofloxacin, ceftazidime, tigecycline and/or vancomycin for Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus were determined using a linear antibiotic concentration gradient in a microfluidic assay. Bacterial growth along the antibiotic gradient was monitored using automated time-lapse photomicrography and growth inhibition was quantified by measuring greyscale intensity changes in the images. In addition to pure culture MICs, vancomycin MICs were determined for S. aureus from spiked and clinical blood cultures following a short centrifugation step. The MICs were compared with those obtained with the Etest and for S. aureus and vancomycin also with macrodilution. Results The MICs obtained with the microfluidic assay showed good agreement internally as well as with the Etest and macrodilution assays, although some minor differences were noted between the methods. The time to possible readout was within the range of 2 to 5 h. Conclusions The examined microfluidic assay has the potential to provide rapid and accurate MICs using samples from positive clinical blood cultures and will now be tested using other bacterial species and antibiotics.


International Journal of Antimicrobial Agents | 2018

Synergistic and bactericidal activities of mecillinam, amoxicillin and clavulanic acid combinations against ESBL-producing Escherichia coli in 24-h time-kill experiments.

Kari-Pekka Skarp; Ayda Shams; Hanna Montelin; Pernilla Lagerbäck; Thomas Tängdén

This study aimed to evaluate the potential synergistic and bactericidal effects of mecillinam in combination with amoxicillin and clavulanic acid against extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. Eight clinical E. coli isolates with varying susceptibility to mecillinam [minimum inhibitory concentrations (MICs) of 0.125 mg/L to >256 mg/L] and high-level resistance to amoxicillin (MICs > 256 mg/L) were used. Whole-genome sequencing was performed to determine the presence of β-lactamase genes and mutations in the cysB gene. The activities of single drugs and the combinations of two or three drugs were tested in 24-h time-kill experiments. Population analysis was performed for two strains before and after experiments. Only one strain had a mutation in the cysB gene resulting in an amino acid substitution. With the two-drug combinations, initial killing was observed both with mecillinam and amoxicillin when combined with clavulanic acid. Synergy was observed with mecillinam and clavulanic acid against one strain and with amoxicillin and clavulanic acid against three strains. However, following significant re-growth, a bactericidal effect was found only with amoxicillin and clavulanic acid against two strains. Pre-existing subpopulations with elevated mecillinam MICs were detected before experiments and were selected with mecillinam alone or in two-drug combinations. In contrast, the three-drug combination showed enhanced activity with synergy against six strains, a bactericidal effect against all eight strains, and suppression of resistance during 24-h antibiotic exposure. This combination may be of clinical interest in the treatment of urinary tract infections caused by ESBL-producing E. coli.

Collaboration


Dive into the Pernilla Lagerbäck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge