Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pernilla Roswall is active.

Publication


Featured researches published by Pernilla Roswall.


Blood | 2011

Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression

Marcela Franco; Pernilla Roswall; Eliane Cortez; Douglas Hanahan; Kristian Pietras

Endothelial cells (ECs) in blood vessels under formation are stabilized by the recruitment of pericytes, both in normal tissues and during angiogenesis in pathologic situations, including neoplasia. In the tumor vasculature, besides supporting the functionality of blood flow, pericytes protect ECs from antiangiogenic therapies, and have thus been implicated in clinical resistance to vascular targeting drugs. However, the molecular nature of the crosstalk between pericytes and ECs is largely unchartered. Herein, we identified pericyte-induced survival signals in ECs by isolation of vascular fragments derived from tumors that had been genetically or pharmacologically engineered to be either pericyte-rich or pericyte-poor. Pericytes induced the antiapoptotic protein Bcl-w in tumor ECs both in vivo and in vitro, thereby conveying protection from cytotoxic damage. The pericyte-dependent survival signaling in ECs was consequential to enforcement of an autocrine loop involving VEGF-A expression in ECs. Through molecular and functional studies, we delineated a signal transduction pathway in ECs downstream of integrin α(v) involving activation of NF-κB as the initiating event of the protective crosstalk from pericytes. Our elucidation of pericyte-derived pro-survival signaling in tumor ECs has potentially important implications for clinical development of antiangiogenic drugs, and suggests new therapeutic targets for rational multitargeting of cancer.


Oncogene | 2013

MiR-155-mediated loss of C/EBP beta shifts the TGF-beta response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer

J. Johansson; Tracy J. Berg; E. Kurzejamska; M-F Pang; V. Tabor; Malin Jansson; Pernilla Roswall; Kristian Pietras; Malin Sund; P. Religa; Jonas Fuxe

During breast cancer progression, transforming growth factor-beta (TGF-β) switches from acting as a growth inhibitor to become a major promoter of epithelial-mesenchymal transition (EMT), invasion and metastasis. However, the mechanisms involved in this switch are not clear. We found that loss of CCAAT-enhancer binding protein beta (C/EBPβ), a differentiation factor for the mammary epithelium, was associated with signs of EMT in triple-negative human breast cancer, and in invasive areas of mammary tumors in MMTV-PyMT mice. Using an established model of TGF-β-induced EMT in mouse mammary gland epithelial cells, we discovered that C/EBPβ was repressed during EMT by miR-155, an oncomiR in breast cancer. Depletion of C/EBPβ potentiated the TGF-β response towards EMT, and contributed to evasion of the growth inhibitory response to TGF-β. Furthermore, loss of C/EBPβ enhanced invasion and metastatic dissemination of the mouse mammary tumor cells to the lungs after subcutaneous injection into mice. The mechanism by which loss of C/EBPβ promoted the TGF-β response towards EMT, invasion and metastasis, was traced to a previously uncharacterized role of C/EBPβ as a transcriptional activator of genes encoding the epithelial junction proteins E-cadherin and coxsackie virus and adenovirus receptor. The results identify miR-155-mediated loss of C/EBPβ as a mechanism, which promotes breast cancer progression by shifting the TGF-β response from growth inhibition to EMT, invasion and metastasis.


Seminars in Cancer Biology | 2014

Functional subsets of mesenchymal cell types in the tumor microenvironment.

Eliane Cortez; Pernilla Roswall; Kristian Pietras

In the field of tumor biology, increasing attention is now focused on the complex interactions between various constituent cell types within the tumor microenvironment as being functionally important for the etiology of the disease. The detailed description of tumor-promoting properties of cancer-associated fibroblasts, endothelial cells, pericytes, and immune cells, introduces novel potential drug targets for improved cancer treatments, as well as a rationale for exploring the tumor stroma as a previously unchartered source for prognostic or predictive biomarkers. However, recent work highlights the fact that cellular identity is perhaps too broadly defined and that subdivision of each cell type may reveal functionally distinct subsets of cells. Here, we will review our current understanding of the diversity of different subsets of mesenchymal cells, i.e., cancer-associated fibroblasts and pericytes, residing within the tumor parenchyma.


BMC Cancer | 2012

miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma

Jelena Põlajeva; Fredrik J. Swartling; Yiwen Jiang; Umashankar Singh; Kristian Pietras; Lene Uhrbom; Bengt Westermark; Pernilla Roswall

BackgroundMicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21.MethodsWe generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student´s t-test.ResultsWe identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression of miR-21 suggesting that miR-21 is indeed regulated by PDGF signaling.ConclusionsOur data show that miR-21 and SOX2 are tightly regulated already during embryogenesis and define a distinct population with putative tumor cell of origin characteristics. Furthermore, we believe that miR-21 is a mediator of PDGF-driven brain tumors, which suggests miR-21 as a promising target for treatment of glioma.


Oncogene | 2010

Therapeutic efficacy of a DNA vaccine targeting the endothelial tip cell antigen delta-like ligand 4 in mammary carcinoma

B K Haller; A Bråve; Elisabet Wallgard; Pernilla Roswall; V G Sunkari; U Mattson; D Hallengärd; S-B Catrina; Mats Hellström; K Pietras

The Notch ligand delta-like ligand 4 (DLL4) is an essential component expressed by endothelial tip cells during angiogenic sprouting. We have described a conceptually novel therapeutic strategy for targeting tumor angiogenesis and endothelial tip cells based on DNA vaccination against DLL4. Immunization with DLL4-encoding plasmid DNA by in vivo electroporation severely retarded the growth of orthotopically implanted mammary carcinomas in mice by induction of a nonproductive angiogenic response. Mechanistically, vaccination brought about a break in tolerance against the self-antigen, DLL4, as evidenced by the production of inhibitory and inherently therapeutic antibodies against mouse DLL4. Importantly, no evidence for a delayed wound healing response, or for toxicity associated with pharmacological blockade of DLL4 signaling, was noted in mice immunized with the DLL4 vaccine. We have thus developed a well-tolerated DNA vaccination strategy targeting the endothelial tip cells and the antigen DLL4 with proven therapeutic efficacy in mouse models of mammary carcinoma; a disease that has been reported to dramatically induce the expression of DLL4. Conceivably, induction of immunity toward principal mediators of pathological angiogenesis could provide protection against recurrent malignant disease in the adjuvant setting.


Journal of the National Cancer Institute | 2015

Role of Tumor Pericytes in the Recruitment of Myeloid-Derived Suppressor Cells

JongWook Hong; Nicholas P. Tobin; Helene Rundqvist; Tian Li; Marion Lavergne; Yaiza García-Ibáñez; Hanyu Qin; Janna Paulsson; Manuel Zeitelhofer; Milena Z. Adzemovic; Ingrid Nilsson; Pernilla Roswall; Johan Hartman; Randall S. Johnson; Arne Östman; Jonas Bergh; Mirjana Poljakovic; Guillem Genové

BACKGROUND Pericytes are members of the tumor stroma; however, little is known about their origin, function, or interaction with other tumor components. Emerging evidence suggest that pericytes may regulate leukocyte transmigration. Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with powerful inhibitory effects on T-cell-mediated antitumor reactivity. METHODS We generated subcutaneous tumors in a genetic mouse model of pericyte deficiency (the pdgfb (ret/ret) mouse) and littermate control mice (n = 6-25). Gene expression profiles from 253 breast cancer patients (stage I-III) were evaluated for clinic-pathological parameters and survival using Cox proportional hazard ratios (HRs) and 95% confidence intervals (CIs) based on a two-sided Wald test. RESULTS We report that pericyte deficiency leads to increased transmigration of Gr1(+)/CD11b(+) cells in experimentally induced tumors. Pericyte deficiency produced defective tumor vasculature, resulting in a more hypoxic microenvironment promoting IL-6 upregulation in the malignant cells. Silencing IL-6 expression in tumor cells attenuated the observed differences in MDSC transmigration. Restoring the pericyte coverage in tumors abrogated the increased MDSC trafficking to pericyte-deficient tumors. MDSC accumulation in tumors led to increases in tumor growth and in circulating malignant cells. Finally, gene expression analysis from human breast cancer patients revealed increased expression of the human MDSC markers CD33 and S100A9 with concomitant decreased expression of pericyte genes and was associated with poor prognosis (HR = 1.88, 95% CI = 1.08 to 3.25, P = .03). CONCLUSIONS Our data uncovers a novel paracrine interaction between tumor pericytes and inflammatory cells and delineates the cellular events resulting in the recruitment of MDSC to tumors. Furthermore, we propose for the first time a role for tumor pericytes in modulating the expression of immune mediators in malignant cells by promoting a hypoxic microenvironment.


Cancer Research | 2015

Endothelial ALK1 Is a Therapeutic Target to Block Metastatic Dissemination of Breast Cancer

Sara I. Cunha; Matteo Bocci; John Lövrot; Nikolas M. Eleftheriou; Pernilla Roswall; Eugenia Cordero; Linda Sofie Lindström; Michael Bartoschek; B. Kristian Haller; R. Scott Pearsall; Aaron W. Mulivor; Ravindra Kumar; Christer Larsson; Jonas Bergh; Kristian Pietras

Exploration of new strategies for the prevention of breast cancer metastasis is justifiably at the center of clinical attention. In this study, we combined a computational biology approach with mechanism-based preclinical trials to identify inhibitors of activin-like receptor kinase (ALK) 1 as effective agents for blocking angiogenesis and metastasis in breast cancer. Pharmacologic targeting of ALK1 provided long-term therapeutic benefit in mouse models of mammary carcinoma, accompanied by strikingly reduced metastatic colonization as a monotherapy or part of combinations with chemotherapy. Gene-expression analysis of breast cancer specimens from a population-based nested case-control study encompassing 768 subjects defined endothelial expression of ALK1 as an independent and highly specific prognostic factor for metastatic manifestation, a finding that was corroborated in an independent clinical cohort. Overall, our results suggest that pharmacologic inhibition of endothelial ALK1 constitutes a tractable strategy for interfering with metastatic dissemination of breast cancer.


BMC Molecular Biology | 2011

CGGBP1 regulates cell cycle in cancer cells

Umashankar Singh; Pernilla Roswall; Lene Uhrbom; Bengt Westermark

BackgroundCGGBP1 is a CGG-triplet repeat binding protein, which affects transcription from CGG-triplet-rich promoters such as the FMR1 gene and the ribosomal RNA gene clusters. Earlier, we reported some previously unknown functions of CGGBP1 in gene expression during heat shock stress response. Recently we had found CGGBP1 to be a cell cycle regulatory midbody protein required for normal cytokinetic abscission in normal human fibroblasts, which have all the cell cycle regulatory mechanisms intact.ResultsIn this study we explored the role of CGGBP1 in the cell cycle in various cancer cell lines. CGGBP1 depletion by RNA interference in tumor-derived cells caused an increase in the cell population at G0/G1 phase and reduced the number of cells in the S phase. CGGBP1 depletion also increased the expression of cell cycle regulatory genes CDKN1A and GAS1, associated with reductions in histone H3 lysine 9 trimethylation in their promoters. By combining RNA interference and genetic mutations, we found that the role of CGGBP1 in cell cycle involves multiple mechanisms, as single deficiencies of CDKN1A, GAS1 as well as TP53, INK4A or ARF failed to rescue the G0/G1 arrest caused by CGGBP1 depletion.ConclusionsOur results show that CGGBP1 expression is important for cell cycle progression through multiple parallel mechanisms including the regulation of CDKN1A and GAS1 levels.


Nature Medicine | 2018

Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling

Pernilla Roswall; Matteo Bocci; Michael Bartoschek; Hong Li; Glen Kristiansen; Sara Jansson; Sophie Lehn; Jonas Sjölund; Steven Reid; Christer Larsson; Pontus Eriksson; Charlotte Anderberg; Eliane Cortez; Lao H. Saal; Christina Orsmark-Pietras; Eugenia Cordero; Bengt Kristian Haller; Jari Häkkinen; Ingrid J. G. Burvenich; Elgene Lim; Akira Orimo; Mattias Höglund; Lisa Rydén; Holger Moch; Andrew M. Scott; Ulf Eriksson; Kristian Pietras

Breast tumors of the basal-like, hormone receptor–negative subtype remain an unmet clinical challenge, as there is high rate of recurrence and poor survival in patients following treatment. Coevolution of the malignant mammary epithelium and its underlying stroma instigates cancer-associated fibroblasts (CAFs) to support most, if not all, hallmarks of cancer progression. Here we delineate a previously unappreciated role for CAFs as determinants of the molecular subtype of breast cancer. We identified paracrine crosstalk between cancer cells expressing platelet-derived growth factor (PDGF)-CC and CAFs expressing the cognate receptors in human basal-like mammary carcinomas. Genetic or pharmacological intervention of PDGF-CC activity in mouse models of cancer resulted in conversion of basal-like breast cancers into a hormone receptor-positive state that enhanced sensitivity to endocrine therapy in previously resistant tumors. We conclude that specification of breast cancer to the basal-like subtype is under microenvironmental control and is therapeutically actionable.


Upsala Journal of Medical Sciences | 2012

Of mice and men: a comparative study of cancer-associated fibroblasts in mammary carcinoma.

Pernilla Roswall; Kristian Pietras

Abstract Introduction. The initial clinical experience from targeted therapy for breast cancer has been mixed. While important progress has been made in the care of a subset of patients characterized by amplification of HER2 through the use of trastuzumab, other targeted therapies have failed to improve the outcome for large, unselected groups of patients. Thus, efforts to find prognostic or predictive biomarkers to enable tailored therapy are highly warranted. Genetically engineered mouse models of human cancer provide a convenient setting in which to perform explorative studies. However, there is a paucity of comparative studies between mouse and human tumours in order to validate the use of mouse models as discovery tools. Materials and methods. Here, we have compared the localization of markers for cancer-associated fibroblasts in the MMTV-PyMT mouse model of mammary carcinoma with that of human breast cancer. The expression of α-smooth muscle actin, platelet-derived growth factor receptor-α, and fibroblast-specific protein-1 was assessed by immunostaining of sections from tumours of MMTV-PyMT mice. Information about the distribution of the same markers in human breast cancer was derived from the publicly available database the Human Protein Atlas. Results. Both mouse and human mammary carcinomas were infused by a rich fibrotic stroma. While no marker was capable of identifying all stromal fibroblasts, the expression pattern of each marker was remarkably similar in mouse and human. Discussion. We conclude that the MMTV-PyMT mouse model of breast cancer will have utility as a discovery tool for biomarkers of cancer-associated fibroblasts during malignant conversion.

Collaboration


Dive into the Pernilla Roswall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge