Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pernille Bronken Eidesen is active.

Publication


Featured researches published by Pernille Bronken Eidesen.


Science | 2007

Frequent Long-Distance Plant Colonization in the Changing Arctic

Inger Greve Alsos; Pernille Bronken Eidesen; Dorothee Ehrich; Inger Skrede; Kristine Bakke Westergaard; Gro Hilde Jacobsen; Jon Y. Landvik; Pierre Taberlet; Christian Brochmann

The ability of species to track their ecological niche after climate change is a major source of uncertainty in predicting their future distribution. By analyzing DNA fingerprinting (amplified fragment-length polymorphism) of nine plant species, we show that long-distance colonization of a remote arctic archipelago, Svalbard, has occurred repeatedly and from several source regions. Propagules are likely carried by wind and drifting sea ice. The genetic effect of restricted colonization was strongly correlated with the temperature requirements of the species, indicating that establishment limits distribution more than dispersal. Thus, it may be appropriate to assume unlimited dispersal when predicting long-term range shifts in the Arctic.


Molecular Ecology | 2006

Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.).

Inger Skrede; Pernille Bronken Eidesen; Rosalía Piñeiro Portela; Christian Brochmann

Many arctic‐alpine organisms have vast present‐day ranges across Eurasia, but their history of refugial isolation, differentiation and postglacial expansion is poorly understood. The mountain avens, Dryas octopetala sensu lato, is a long‐lived, wind‐dispersed, diploid shrub forming one of the most important components of Eurasian tundras and heaths in terms of biomass. We address differentiation and migration history of the species with emphasis on the western and northern Eurasian parts of its distribution area, also including some East Greenlandic and North American populations (partly referred to as the closely related D. integrifolia M. Vahl). We analysed 459 plants from 52 populations for 155 amplified fragment length polymorphisms (AFLP) markers. The Eurasian plants were separated into two main groups, probably reflecting isolation and expansion from two major glacial refugia, situated south and east of the North European ice sheets, respectively. Virtually all of northwestern Europe as well as East Greenland have been colonized by the Southern lineage, whereas northwest Russia, the Tatra Mountains and the arctic archipelago of Svalbard have been colonized by the Eastern lineage. The data indicate a contact zone between the two lineages in northern Scandinavia and possibly in the Tatra Mountains. The two single populations analysed from the Caucasus and Altai Mountains were most closely related to the Eastern lineage but were strongly divergent from the remaining eastern populations, suggesting survival in separate refugia at least during the last glaciation. The North American populations grouped with those from East Greenland, irrespective of their taxonomic affiliation, but this may be caused by independent hybridization with D. integrifolia and therefore not reflect the true relationship between populations from these areas.


Molecular Ecology | 2007

Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species

Pernille Bronken Eidesen; Inger Greve Alsos; Magnus Popp; Ø. Stensrud; Jan Suda; Christian Brochmann

To fully understand the contemporary genetic structure of plants, both nuclear and plastid markers are needed. Three chloroplast DNA (cpDNA) lineages, which probably diverged before the major Pleistocene glaciations, have been identified in the circumpolar/circumboreal Vaccinium uliginosum. Here we investigate its nuclear DNA variation using nuclear ribosomal internal transcribed spacer (ITS) sequences, DNA ploidy level measurements and amplified fragment length polymorphisms (AFLPs). We also extend the cpDNA dataset. Two ITS lineages, corresponding to diploids and tetraploids, respectively, were identified. However, both main sequence types apparently occurred in most individual plants but showed ploidy‐biased homogenization and possibly reflect paralogy predating the origin of V. uliginosum. The ploidy levels were largely consistent with the cpDNA lineages, suggesting that the initial cpDNA divergence followed early polyploidizations. Five main AFLP groups were identified, consistent with recent glacial refugia in Beringia, western Siberia, the southern European mountains and areas south/east of the Scandinavian and Laurentide ice sheets. Except from the southern European mountains, there has been extensive expansion from all refugia, resulting in several contact zones. Surprisingly, the presumably older ploidy and cpDNA patterns were partly inconsistent with the main AFLP groups and more consistent with AFLP subgroups. A likely major driver causing the inconsistencies is recent nuclear gene flow via unreduced pollen from diploids to tetraploids. This may prevent cytoplasmic introgression and result in overlayed patterns formed by processes dominating at different time scales. The data also suggest more recent polyploidizations, as well as several chloroplast capture events, further complicating this scenario. This study highlights the importance of combining different marker systems to unravel intraspecific histories.


New Phytologist | 2013

Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity

Pernille Bronken Eidesen; Dorothee Ehrich; Vegar Bakkestuen; Inger Greve Alsos; Oliver Gilg; Pierre Taberlet; Christian Brochmann

We provide the first comparative multispecies analysis of spatial genetic structure and diversity in the circumpolar Arctic using a common strategy for sampling and genetic analyses. We aimed to identify and explain potential general patterns of genetic discontinuity/connectivity and diversity, and to compare our findings with previously published hypotheses. We collected and analyzed 7707 samples of 17 widespread arctic-alpine plant species for amplified fragment length polymorphisms (AFLPs). Genetic structure, diversity and distinctiveness were analyzed for each species, and extrapolated to cover the geographic range of each species. The resulting maps were overlaid to produce metamaps. The Arctic and Atlantic Oceans, the Greenlandic ice cap, the Urals, and lowland areas between southern mountain ranges and the Arctic were the strongest barriers against gene flow. Diversity was highest in Beringia and gradually decreased into formerly glaciated areas. The highest degrees of distinctiveness were observed in Siberia. We conclude that large-scale general patterns exist in the Arctic, shaped by the Pleistocene glaciations combined with long-standing physical barriers against gene flow. Beringia served as both refugium and source for interglacial (re)colonization, whereas areas further west in Siberia served as refugia, but less as sources for (re)colonization.


Molecular Ecology | 2014

Arctic root-associated fungal community composition reflects environmental filtering.

Rakel Blaalid; Marie L. Davey; Håvard Kauserud; Tor Carlsen; Rune Halvorsen; Klaus Høiland; Pernille Bronken Eidesen

There is growing evidence that root‐associated fungi have important roles in Arctic ecosystems. Here, we assess the diversity of fungal communities associated with roots of the ectomycorrhizal perennial herb Bistorta vivipara on the Arctic archipelago of Svalbard and investigate whether spatial separation and bioclimatic variation are important structuring factors of fungal community composition. We sampled 160 plants of B. vivipara from 32 localities across Svalbard. DNA was extracted from entire root systems, and 454 pyrosequencing of ITS1 amplicons was used to profile the fungal communities. The fungal communities were predominantly composed of Basidiomycota (55% of reads) and Ascomycota (35%), with the orders Thelephorales (24%), Agaricales (13.8%), Pezizales (12.6%) and Sebacinales (11.3%) accounting for most of the reads. Plants from the same site or region had more similar fungal communities to one another than plants from other sites or regions, and sites clustered together along a weak latitudinal gradient. Furthermore, a decrease in per‐plant OTU richness with increasing latitude was observed. However, no statistically significant spatial autocorrelation between sites was detected, suggesting that environmental filtering, not dispersal limitation, causes the observed patterns. Our analyses suggest that while latitudinal patterns in community composition and richness might reflect bioclimatic influences at global spatial scales, at the smaller spatial scale of the Svalbard archipelago, these changes more likely reflect varied bedrock composition and associated edaphic factors. The need for further studies focusing on identifying those specific bioclimatic and edaphic factors structuring root‐associated fungal community composition at both global and local scales is emphasized.


Annals of Botany | 2012

No divergence in Cassiope tetragona: persistence of growth response along a latitudinal temperature gradient and under multi-year experimental warming.

Stef Weijers; Inger Greve Alsos; Pernille Bronken Eidesen; Rob Broekman; Maarten Loonen; Jelte Rozema

BACKGROUND AND AIMS The dwarf shrub Cassiope tetragona (Arctic bell-heather) is increasingly used for arctic climate reconstructions, the reliability of which depends on the existence of a linear climate-growth relationship. This relationship was examined over a high-arctic to sub-arctic temperature gradient and under multi-year artificial warming at a high-arctic site. METHODS Growth chronologies of annual shoot length, as well as total leaf length, number of leaves and average leaf length per year, were constructed for three sites. Cassiope tetragona was sampled near its cold tolerance limit at Ny-Ålesund, Svalbard, at its assumed climatic optimum in Endalen, Svalbard, and near its European southern limit at Abisko, Sweden. Together these sites represent the entire temperature gradient of this species. Leaf life span was also determined. Each growing season from 2004 to 2010, 17 open top chambers (OTCs) were placed near Ny-Ålesund, thus increasing the daily mean temperatures by 1·23°C. At the end of the 2010 growing season, shoots were harvested from OTCs and control plots, and growth parameters were measured. KEY RESULTS All growth parameters, except average leaf length, exhibited a linear positive response (R(2) between 0·63 and 0·91) to mean July temperature over the temperature gradient. Average leaf life span was 1·4 years shorter in sub-arctic Sweden compared with arctic Svalbard. All growth parameters increased in response to the experimental warming; the leaf life span was, however, not significantly affected by OTC warming. CONCLUSIONS The linear July temperature-growth relationships, as well as the 7 year effect of experimental warming, confirm that the growth parameters annual shoot length, total leaf length and number of leaves per year can reliably be used for monitoring and reconstructing temperature changes. Furthermore, reconstructing July temperature from these parameters is not hampered by divergence.


Environmental Research Letters | 2012

Range shifts and global warming: ecological responses of Empetrum nigrum L. to experimental warming at its northern (high Arctic) and southern (Atlantic) geographical range margin

Bert Buizer; Stef Weijers; Peter M. van Bodegom; Inger Greve Alsos; Pernille Bronken Eidesen; Johan van Breda; Maarten de Korte; Jaap van Rijckevorsel; J. Rozema

Global change is expected to lead to range shifts of plant species. The ecological mechanisms underpinning these shifts are currently not well understood. Here, we compared ecological responses possibly underlying southern range contraction and northern range expansion of Empetrum nigrum, a key species in northern heathlands, which may be related to global change. We hypothesized a negative response to warming in the ‘south’ (i.e. the Netherlands) and a positive response at the northern range margin (the tundra on Svalbard). Open top chambers (OTCs) were used to simulate global warming. In the ‘south’, OTC warming caused enhanced shoot growth and growth rate, biomass increment, advanced phenology, larger and heavier berries of Empetrum, while its growing season was extended by 75 days. Under OTC warming co-occurring Calluna vulgaris also showed an increased growing season length (by 98 days) as well as increased shoot growth rate and biomass growth, plant cover and height. Still, we found no evidence for increased competitiveness relative to Empetrum. In the ‘north’, Empetrum responded with increased shoot and biomass growth, enhanced berry development and ripening to warming. These responses exceeded those of co-occurring Cassiope tetragona with the exception of its biomass response. The direct and indirect ecological responses found do not readily explain the observed northward retreat of Empetrum at the southern range margin. The direct ecological responses found at its northern range margin are, on the other hand, in line with the increased occurrences of this species on Svalbard.


Aob Plants | 2015

Long-distance plant dispersal to North Atlantic islands:colonization routes and founder effect

Inger Greve Alsos; Dorothee Ehrich; Pernille Bronken Eidesen; Heidi Merethe Solstad; Kristine Bakke Westergaard; Peter Schönswetter; Andreas Tribsch; Siri Birkeland; Reidar Elven; Christian Brochmann

Our study provides new knowledge of two processes that are important for plant adaptation in a changing environment: 1) long-distance dispersal patterns, and 2) genetic founder effect on islands. Although the theoretical framework for the genetic founder effect on islands was proposed in 1973, we are the first to quantify it in relation to island size, dispersal distance, and plant traits. In addition, our genetic results are mainly coherent with post-glacial colonisation rather than in situ glacial survival, and should therefore bring a final end to the 140-year-long glacial survival-tabula rasa debate among northern biologists.


Environmental Microbiology | 2015

Primary succession of Bistorta vivipara (L.) Delabre (Polygonaceae) root-associated fungi mirrors plant succession in two glacial chronosequences

Marie L. Davey; Rakel Blaalid; Unni Vik; Tor Carlsen; Håvard Kauserud; Pernille Bronken Eidesen

Glacier chronosequences are important sites for primary succession studies and have yielded well-defined primary succession models for plants that identify environmental resistance as an important determinant of the successional trajectory. Whether plant-associated fungal communities follow those same successional trajectories and also respond to environmental resistance is an open question. In this study, 454 amplicon pyrosequencing was used to compare the root-associated fungal communities of the ectomycorrhizal (ECM) herb Bistorta vivipara along two primary succession gradients with different environmental resistance (alpine versus arctic) and different successional trajectories in the vascular plant communities (directional replacement versus directional non-replacement). At both sites, the root-associated fungal communities were dominated by ECM basidiomycetes and community composition shifted with increasing time since deglaciation. However, the fungal communitys successional trajectory mirrored the pattern observed in the surrounding plant community at both sites: the alpine site displayed a directional-replacement successional trajectory, and the arctic site displayed a directional-non-replacement successional trajectory. This suggests that, like in plant communities, environmental resistance is key in determining succession patterns in root-associated fungi. The need for further replicated study, including in other host species, is emphasized.


Molecular Ecology | 2015

Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic

Sunil Mundra; Mohammad Bahram; Leho Tedersoo; Håvard Kauserud; Rune Halvorsen; Pernille Bronken Eidesen

Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing‐season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time‐points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing‐season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter‐active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between‐year variation. Our study indicates that addressing seasonal changes requires replication over several years.

Collaboration


Dive into the Pernille Bronken Eidesen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eike Müller

University Centre in Svalbard

View shared research outputs
Top Co-Authors

Avatar

Christian Brochmann

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristine Bakke Westergaard

American Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge