Pernille Tveden-Nyborg
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pernille Tveden-Nyborg.
Nutrients | 2013
Maiken M. Lindblad; Pernille Tveden-Nyborg; Jens Lykkesfeldt
Large cross-sectional population studies confirm that vitamin C deficiency is common in humans, affecting 5%–10% of adults in the industrialized world. Moreover, significant associations between poor vitamin C status and increased morbidity and mortality have consistently been observed. However, the absorption, distribution and elimination kinetics of vitamin C in vivo are highly complex, due to dose-dependent non-linearity, and the specific regulatory mechanisms are not fully understood. Particularly, little is known about how adaptive mechanisms during states of deficiency affect the overall regulation of vitamin C transport in the body. This review discusses mechanisms of vitamin C transport and potential means of regulation with special emphasis on capacity and functional properties, such as differences in the Km of vitamin C transporters in different target tissues, in some instances demonstrating a tissue-specific distribution.
PLOS ONE | 2012
Pernille Tveden-Nyborg; Lucile Vogt; Janne G. Schjoldager; Natalie Jeannet; Stine Hasselholt; Maya Devi Paidi; Stephan Christen; Jens Lykkesfeldt
While having the highest vitamin C (VitC) concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study investigates how prenatal VitC deficiency affects postnatal hippocampal development and if any such effect can be reversed by postnatal VitC repletion. Eighty pregnant Dunkin Hartley guinea pig dams were randomized into weight stratified groups receiving High (900 mg) or Low (100 mg) VitC per kg diet. Newborn pups (n = 157) were randomized into a total of four postnatal feeding regimens: High/High (Control); High/Low (Depleted), Low/Low (Deficient); and Low/High (Repleted). Proliferation and migration of newborn cells in the dentate gyrus was assessed by BrdU labeling and hippocampal volumes were determined by stereology. Prenatal VitC deficiency resulted in a significant reduction in postnatal hippocampal volume (P<0.001) which was not reversed by postnatal repletion. There was no difference in postnatal cellular proliferation and survival rates in the hippocampus between dietary groups, however, migration of newborn cells into the granular layer of the hippocampus dentate gyrus was significantly reduced in prenatally deficient animals (P<0.01). We conclude that a prenatal VitC deficiency in guinea pigs leads to persistent impairment of postnatal hippocampal development which is not alleviated by postnatal repletion. Our findings place attention on a yet unrecognized consequence of marginal VitC deficiency during pregnancy.
Redox Report | 2009
Pernille Tveden-Nyborg; Jens Lykkesfeldt
Abstract Scurvy, the rare but potentially mortal manifestation of severe and prolonged lack of vitamin C, is often confused with hypovitaminosis C, i.e. the mere definition of vitamin C deficiency. While the latter condition can be diagnosed in millions, the clinical consequences (if they exist) remain largely unknown, since only a tiny fraction of those deficient in vitamin C actually develop clinical scurvy. Is hypovitaminosis C itself a problem at all then? Yes, it may well be in some cases. Recent data from our laboratory suggest that the neonatal brain is particularly susceptible to vitamin C deficiency and that this condition may adversely affect early brain development.
Nutrition Research | 2013
Alan Mortensen; Stine Hasselholt; Pernille Tveden-Nyborg; Jens Lykkesfeldt
Tetrahydrobiopterin (BH₄) is an essential co-factor of nitric oxide synthases and is easily oxidized to dihydrobiopterin (BH₂) which promotes endothelial nitric oxide synthase uncoupling and deleterious superoxide production. Vitamin C has been shown to improve endothelial function by different mechanisms, some involving BH₄. The hypothesis of the present study was that vitamin C status, in particular low levels, influences biopterin redox status in vivo. Like humans, the guinea pig lacks the ability to synthesize vitamin C and was therefore used as model. Seven day old animals (n = 10/group) were given a diet containing 100, 250, 500, 750, 1000, or 1500 ppm vitamin C until euthanasia at age 60-64 days. Blood samples were drawn from the heart and analyzed for ascorbate, dehydroascorbic acid (DHA), BH₄ and BH₂ by high-performance liquid chromatography. Plasma BH₄ levels were found to be significantly lower in animals fed 100 ppm vitamin C compared to all other groups (P < .05 or less). BH₂ levels were not significantly different between groups but the BH₂-to-BH₄ ratio was higher in the group fed 100 ppm vitamin C (P < .001 all cases). Significant positive correlations between BH4 and ascorbate and between BH₂-to-BH₄ ratio and DHA were observed (P < .0001 both cases). Likewise, BH₂-to-BH₄ ratio was negatively correlated with ascorbate (P < .0001) as was BH₄ and DHA (P < .005). In conclusion, the redox status of plasma biopterins, essentially involved in vasodilation, depends on the vitamin C status in vivo. Thus, ingestion of insufficient quantities of vitamin C not only leads to vitamin C deficiency but also to increased BH₄ oxidation which may promote endothelial dysfunction.
Basic & Clinical Pharmacology & Toxicology | 2012
Pernille Tveden-Nyborg; Stine Hasselholt; Namiyo Miyashita; Torben Moos; Henrik E. Poulsen; Jens Lykkesfeldt
Increased oxidative stress in the brain has consistently been implied in ageing and in several degenerative brain disorders. Acting as a pivotal antioxidant in the brain, vitamin C is preferentially retained during deficiency and may play an essential role in neuroprotection during ageing. Thus, a lack of vitamin C could be associated with an increase in redox imbalance in the ageing brain. The present study compared oxidative stress of ageing to that of a long‐term non‐scorbutic vitamin C deficiency in guinea pigs. Adults (3–9 months old) were compared to old (36–42 months old) animals during a 6‐month dietary intervention by assessing vitamin C transport and redox homoeostasis in the brain. In contrast to our hypothesis, chronic vitamin C deficiency did not affect the measured markers of oxidative stress in the brains of adult and aged animals. However, aged animals generally showed increased lipid oxidation (p < 0.001), decreased glutathione (p < 0.05), increased p53 mRNA expression (p < 0.01) and somewhat elevated DNA oxidation (p = 0.08) compared to adult counterparts irrespective of dietary vitamin C intake. Increased mRNA expression of sod1 (p < 0.05) and svct2 (p = 0.05) was observed in aged animals together with increased superoxide dismutase activity (p < 0.01) and cerebrospinal fluid vitamin C status (p < 0.001) suggesting a compensatory effort that did not counterbalance the effects of ageing. Essentially, no effects of age were observed in the liver demonstrating the brains unique susceptibility to redox imbalance. Consistent with previous findings, we show that ageing per se constitutes a considerable oxidative insult in the brain. However, our data also suggest that a long‐term poor vitamin C status does not accelerate this process.
Obesity | 2016
David Højland Ipsen; Pernille Tveden-Nyborg; Jens Lykkesfeldt
The liver coordinates lipid metabolism and may play a vital role in the development of dyslipidemia, even in the absence of obesity. Normal weight dyslipidemia (NWD) and patients with nonalcoholic fatty liver disease (NAFLD) who do not have obesity constitute a unique subset of individuals characterized by dyslipidemia and metabolic deterioration. This review examined the available literature on the role of the liver in dyslipidemia and the metabolic characteristics of patients with NAFLD who do not have obesity.
Redox biology | 2014
Maya Devi Paidi; Janne G. Schjoldager; Jens Lykkesfeldt; Pernille Tveden-Nyborg
Antioxidant defences are comparatively low during foetal development making the brain particularly susceptible to oxidative stress during antioxidant deficiencies. The brain is one of the organs containing the highest concentration of vitamin C (VitC) and VitC deficiency during foetal development may place the brain at risk of redox status imbalance. In the present study, we investigated the developmental pattern and effect of VitC deficiency on antioxidants, vitamin E and superoxide dismutase (SOD), assessed oxidative damage by measuring malondialdehyde (MDA), hydroxynonenal (HNE) and nitrotyrosine (NT) and analysed gene and protein expression of apoptosis marker caspase-3 in the guinea pig foetal brain at two gestational (GD) time points, GD 45/pre-term and GD 56/near term following either a VitC sufficient (CTRL) or deficient (DEF) maternal dietary regime. We show that except for SOD, antioxidants and oxidative damage markers are differentially expressed between the two GDs, with high VitC (p<0.0001), NT modified proteins (p<0.0001) and active caspase-3 levels (p<0.05) at pre-term and high vitamin E levels (p<0.0001), HNE (p<0.0001) and MDA (p<0.0001) at near term. VitC deficiency significantly increased SOD activity (p<0.0001) compared to CTRLs at both GDs indicating a compensatory response, however, low levels of VitC significantly elevated MDA levels (p<0.05) in DEF at near term. Our results show a differential regulation of the investigated markers during late gestation and suggest that immature brains are susceptible to oxidative stress due to prenatal vitC deficiency in spite of an induction of protective adaptation mechanisms.
Nutrients | 2014
Stine Normann Hansen; Pernille Tveden-Nyborg; Jens Lykkesfeldt
Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(−/−) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies.
Nutrients | 2014
David Højland Ipsen; Pernille Tveden-Nyborg; Jens Lykkesfeldt
Obesity and the subsequent reprogramming of the white adipose tissue are linked to human disease-complexes including metabolic syndrome and concurrent non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). The dietary imposed dyslipidemia promotes redox imbalance by the generation of excess levels of reactive oxygen species and induces adipocyte dysfunction and reprogramming, leading to a low grade systemic inflammation and ectopic lipid deposition, e.g., in the liver, hereby promoting a vicious circle in which dietary factors initiate a metabolic change that further exacerbates the negative consequences of an adverse life-style. Large epidemiological studies and findings from controlled in vivo animal studies have provided evidence supporting an association between poor vitamin C (VitC) status and propagation of life-style associated diseases. In addition, overweight per se has been shown to result in reduced plasma VitC, and the distribution of body fat in obesity has been shown to have an inverse relationship with VitC plasma levels. Recently, a number of epidemiological studies have indicated a VitC intake below the recommended daily allowance (RDA) in NAFLD-patients, suggesting an association between dietary habits, disease and VitC deficiency. In the general population, VitC deficiency (defined as a plasma concentration below 23 μM) affects around 10% of adults, however, this prevalence is increased by an adverse life-style, deficiency potentially playing a broader role in disease progression in specific subgroups. This review discusses the currently available data from human surveys and experimental models in search of a putative role of VitC deficiency in the development of NAFLD and NASH.
British Journal of Nutrition | 2013
Janne G. Schjoldager; Pernille Tveden-Nyborg; Jens Lykkesfeldt
Human and guinea pig fetuses are completely dependent on an adequate maternal vitamin C (vitC) intake. Shortage of micronutrients can have negative implications for fetal health and pregnancy outcome; however, knowledge of maternal vitC deficiencys impact on fetal development is sparse and reports of pregnancy outcome have been divergent. The present study investigated whether maternal vitC deficiency affects pregnancy outcome and plasma vitC distribution between the mother and the offspring in a guinea pig model. A total of eighty pregnant Dunkin Hartley guinea pigs were randomised into two weight-stratified groups receiving either a deficient (100 mg/kg DEF) or a control (923 mg/kg CTRL) diet. VitC levels were measured in plasma during pregnancy and postpartum, and in the plasma and brain of newborns. Pregnancy outcome was recorded with respect to birth weight and perinatal survival and were similar between groups. Plasma vitC in dams declined throughout gestation in both groups (P< 0·01). Compared with maternal plasma vitC, plasma vitC of newborn pups was found to be significantly lower in the DEF group (P< 0·001) and higher in the CTRL group (P< 0·001), respectively. Brain vitC levels were significantly reduced in DEF newborn pups (P< 0·001). The present results indicate that preferential transport of vitC from the mother to the fetus is overridden during sustained maternal vitC deficiency, maintaining maternal vitC concentration at the expense of the offspring. This contradicts the notion that a fetus is protected from vitC deficiency by the placental Na-dependent vitC co-transporter, SVCT2, thus fetal development may be susceptible to the negative effects of maternal vitC deficiency.