Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Perry E. Sheffield is active.

Publication


Featured researches published by Perry E. Sheffield.


PLOS ONE | 2014

Heat-Related Mortality in India: Excess All-Cause Mortality Associated with the 2010 Ahmedabad Heat Wave

Gulrez Shah Azhar; Dileep Mavalankar; Amruta Nori-Sarma; Ajit Rajiva; Priya Dutta; Anjali Jaiswal; Perry E. Sheffield; Kim Knowlton; Jeremy Hess

Introduction In the recent past, spells of extreme heat associated with appreciable mortality have been documented in developed countries, including North America and Europe. However, far fewer research reports are available from developing countries or specific cities in South Asia. In May 2010, Ahmedabad, India, faced a heat wave where the temperatures reached a high of 46.8°C with an apparent increase in mortality. The purpose of this study is to characterize the heat wave impact and assess the associated excess mortality. Methods We conducted an analysis of all-cause mortality associated with a May 2010 heat wave in Ahmedabad, Gujarat, India, to determine whether extreme heat leads to excess mortality. Counts of all-cause deaths from May 1–31, 2010 were compared with the mean of counts from temporally matched periods in May 2009 and 2011 to calculate excess mortality. Other analyses included a 7-day moving average, mortality rate ratio analysis, and relationship between daily maximum temperature and daily all-cause death counts over the entire year of 2010, using month-wise correlations. Results The May 2010 heat wave was associated with significant excess all-cause mortality. 4,462 all-cause deaths occurred, comprising an excess of 1,344 all-cause deaths, an estimated 43.1% increase when compared to the reference period (3,118 deaths). In monthly pair-wise comparisons for 2010, we found high correlations between mortality and daily maximum temperature during the locally hottest “summer” months of April (r = 0.69, p<0.001), May (r = 0.77, p<0.001), and June (r = 0.39, p<0.05). During a period of more intense heat (May 19–25, 2010), mortality rate ratios were 1.76 [95% CI 1.67–1.83, p<0.001] and 2.12 [95% CI 2.03–2.21] applying reference periods (May 12–18, 2010) from various years. Conclusion The May 2010 heat wave in Ahmedabad, Gujarat, India had a substantial effect on all-cause excess mortality, even in this city where hot temperatures prevail through much of April-June.


American Journal of Preventive Medicine | 2011

Modeling of Regional Climate Change Effects on Ground-Level Ozone and Childhood Asthma

Perry E. Sheffield; Kim Knowlton; Jessie L. Carr; Patrick L. Kinney

BACKGROUND The adverse respiratory effects of ground-level ozone are well established. Ozone is the air pollutant most consistently projected to increase under future climate change. PURPOSE To project future pediatric asthma emergency department visits associated with ground-level ozone changes, comparing 1990s to 2020s. METHODS This study assessed future numbers of asthma emergency department visits for children aged 0-17 years using (1) baseline New York City metropolitan area emergency department rates; (2) a dose-response relationship between ozone levels and pediatric asthma emergency department visits; and (3) projected daily 8-hour maximum ozone concentrations for the 2020s as simulated by a global-to-regional climate change and atmospheric chemistry model. Sensitivity analyses included population projections and ozone precursor changes. This analysis occurred in 2010. RESULTS In this model, climate change could cause an increase in regional summer ozone-related asthma emergency department visits for children aged 0-17 years of 7.3% across the New York City metropolitan region by the 2020s. This effect diminished with inclusion of ozone precursor changes. When population growth is included, the projections of morbidity related to ozone are even larger. CONCLUSIONS The results of this analysis demonstrate that the use of regional climate and atmospheric chemistry models make possible the projection of local climate change health effects for specific age groups and specific disease outcomes, such as emergency department visits for asthma. Efforts should be made to improve on this type of modeling to inform local and wider-scale climate change mitigation and adaptation policy.


International Journal of Biometeorology | 2014

The impact of heat waves on children’s health: a systematic review

Zhiwei Xu; Perry E. Sheffield; Hong Su; Xiao Yu Wang; Yan Bi; Shilu Tong

Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children’s health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: “heatwave”, “heat wave”, “child health”, “morbidity”, “hospital admission”, “emergency department visit”, “family practice”, “primary health care”, “death” and “mortality”. Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children’s health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children’s health perspective, identifying the best measure of children’s exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children’s birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children’s disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.


International Journal of Environmental Research and Public Health | 2012

Climate Change and Children's Health—A Call for Research on What Works to Protect Children

Zhiwei Xu; Perry E. Sheffield; Wenbiao Hu; Hong Su; Weiwei Yu; Xin Qi; Shilu Tong

Climate change is affecting and will increasingly influence human health and wellbeing. Children are particularly vulnerable to the impact of climate change. An extensive literature review regarding the impact of climate change on children’s health was conducted in April 2012 by searching electronic databases PubMed, Scopus, ProQuest, ScienceDirect, and Web of Science, as well as relevant websites, such as IPCC and WHO. Climate change affects children’s health through increased air pollution, more weather-related disasters, more frequent and intense heat waves, decreased water quality and quantity, food shortage and greater exposure to toxicants. As a result, children experience greater risk of mental disorders, malnutrition, infectious diseases, allergic diseases and respiratory diseases. Mitigation measures like reducing carbon pollution emissions, and adaptation measures such as early warning systems and post-disaster counseling are strongly needed. Future health research directions should focus on: (1) identifying whether climate change impacts on children will be modified by gender, age and socioeconomic status; (2) refining outcome measures of children’s vulnerability to climate change; (3) projecting children’s disease burden under climate change scenarios; (4) exploring children’s disease burden related to climate change in low-income countries; and (5) identifying the most cost-effective mitigation and adaptation actions from a children’s health perspective.


Mount Sinai Journal of Medicine | 2011

CLIMATE CHANGE, AEROALLERGENS AND PEDIATRIC ALLERGIC DISEASE

Perry E. Sheffield; Kate R. Weinberger; Patrick L. Kinney

The degree to which aeroallergens are contributing to the global increase in pediatric allergic disease is incompletely understood. We review the evidence that links climate change to changes in aeroallergens such as pollen and outdoor mold concentrations and, subsequently, aeroallergen association with pediatric allergic disease. We specifically explore the evidence on both the exacerbation and the development of allergic disease in children related to outdoor pollen and mold concentrations. Pediatric allergic diseases include atopic dermatitis or eczema, allergic rhinitis or hay fever, and some types of asthma in children, typically defined as < 18 years of age. We discuss how the timing of aeroallergen exposure both in utero and in childhood could be associated with allergies. We conclude that the magnitude and type of health impacts due to climate change will depend on improved understanding of the relationship between climatic variables, multiple allergen factors, and allergic disease. Improved public-health strategies such as adequate humidity control, optimum air filtration and ventilation, and improved anticipatory public-health messaging will be critical to adaptation.


International Journal of Environmental Research and Public Health | 2014

Development and implementation of South Asia's first heat-health action plan in Ahmedabad (Gujarat, India).

Kim Knowlton; Suhas P. Kulkarni; Gulrez Shah Azhar; Dileep Mavalankar; Anjali Jaiswal; Meredith Connolly; Amruta Nori-Sarma; Ajit Rajiva; Priya Dutta; Bhaskar Deol; Lauren Sanchez; Radhika Khosla; Peter J. Webster; Violeta E. Toma; Perry E. Sheffield; Jeremy Hess

Recurrent heat waves, already a concern in rapidly growing and urbanizing South Asia, will very likely worsen in a warming world. Coordinated adaptation efforts can reduce heat’s adverse health impacts, however. To address this concern in Ahmedabad (Gujarat, India), a coalition has been formed to develop an evidence-based heat preparedness plan and early warning system. This paper describes the group and initial steps in the plan’s development and implementation. Evidence accumulation included extensive literature review, analysis of local temperature and mortality data, surveys with heat-vulnerable populations, focus groups with health care professionals, and expert consultation. The findings and recommendations were encapsulated in policy briefs for key government agencies, health care professionals, outdoor workers, and slum communities, and synthesized in the heat preparedness plan. A 7-day probabilistic weather forecast was also developed and is used to trigger the plan in advance of dangerous heat waves. The pilot plan was implemented in 2013, and public outreach was done through training workshops, hoardings/billboards, pamphlets, and print advertisements. Evaluation activities and continuous improvement efforts are ongoing, along with plans to explore the program’s scalability to other Indian cities, as Ahmedabad is the first South Asian city to address heat-health threats comprehensively.


Health Affairs | 2011

Fine Particulate Matter Pollution Linked To Respiratory Illness In Infants And Increased Hospital Costs

Perry E. Sheffield; Angkana Roy; Kendrew Wong; Leonardo Trasande

There has been little research to date on the linkages between air pollution and infectious respiratory illness in children, and the resulting health care costs. In this study we used data on air pollutants and national hospitalizations to study the relationship between fine particulate air pollution and health care charges and costs for the treatment of bronchiolitis, an acute viral infection of the lungs. We found that as the average exposure to fine particulate matter over the lifetime of an infant increased, so did costs for the childs health care. If the United States were to reduce levels of fine particulate matter to 7 percent below the current annual standard, the nation could save


Environmental Health | 2015

The associations between daily spring pollen counts, over-the-counter allergy medication sales, and asthma syndrome emergency department visits in New York City, 2002-2012.

Kazuhiko Ito; Kate R. Weinberger; Guy S. Robinson; Perry E. Sheffield; Ramona Lall; Robert Mathes; Zev Ross; Patrick L. Kinney; Thomas Matte

15 million annually in reduced health care costs from hospitalizations of children with bronchiolitis living in urban areas. These findings reinforce the need for ongoing efforts to reduce levels of air pollutants. They should trigger additional investigation to determine if the current standards for fine-particulate matter are sufficiently protective of childrens health.


International Journal of Environmental Research and Public Health | 2013

A cross-sectional, randomized cluster sample survey of household vulnerability to extreme heat among slum dwellers in ahmedabad, india.

Kathy V. Tran; Gulrez Shah Azhar; Rajesh Nair; Kim Knowlton; Anjali Jaiswal; Perry E. Sheffield; Dileep Mavalankar; Jeremy Hess

BackgroundMany types of tree pollen trigger seasonal allergic illness, but their population-level impacts on allergy and asthma morbidity are not well established, likely due to the paucity of long records of daily pollen data that allow analysis of multi-day effects. Our objective in this study was therefore to determine the impacts of individual spring tree pollen types on over-the-counter allergy medication sales and asthma emergency department (ED) visits.MethodsNine clinically-relevant spring tree pollen genera (elm, poplar, maple, birch, beech, ash, sycamore/London planetree, oak, and hickory) measured in Armonk, NY, were analyzed for their associations with over-the-counter allergy medication sales and daily asthma syndrome ED visits from patients’ chief complaints or diagnosis codes in New York City during March 1st through June 10th, 2002-2012. Multi-day impacts of pollen on the outcomes (0-3 days and 0-7 days for the medication sales and ED visits, respectively) were estimated using a distributed lag Poisson time-series model adjusting for temporal trends, day-of-week, weather, and air pollution. For asthma syndrome ED visits, age groups were also analyzed. Year-to-year variation in the average peak dates and the 10th-to-90th percentile duration between pollen and the outcomes were also examined with Spearman’s rank correlation.ResultsMid-spring pollen types (maple, birch, beech, ash, oak, and sycamore/London planetree) showed the strongest significant associations with both outcomes, with cumulative rate ratios up to 2.0 per 0-to-98th percentile pollen increase (e.g., 1.9 [95 % CI: 1.7, 2.1] and 1.7 [95 % CI: 1.5, 1.9] for the medication sales and ED visits, respectively, for ash). Lagged associations were longer for asthma syndrome ED visits than for the medication sales. Associations were strongest in children (ages 5-17; e.g., a cumulative rate ratio of 2.6 [95 % CI: 2.1, 3.1] per 0-to-98th percentile increase in ash). The average peak dates and durations of some of these mid-spring pollen types were also associated with those of the outcomes.ConclusionsTree pollen peaking in mid-spring exhibit substantive impacts on allergy, and asthma exacerbations, particularly in children. Given the narrow time window of these pollen peak occurrences, public health and clinical approaches to anticipate and reduce allergy/asthma exacerbation should be developed.


Environmental Health | 2015

Ambient ozone exposure and children’s acute asthma in New York City: a case-crossover analysis

Perry E. Sheffield; Jiang Feng Zhou; Jessie Loving Carr Shmool; Jane E. Clougherty

Extreme heat is a significant public health concern in India; extreme heat hazards are projected to increase in frequency and severity with climate change. Few of the factors driving population heat vulnerability are documented, though poverty is a presumed risk factor. To facilitate public health preparedness, an assessment of factors affecting vulnerability among slum dwellers was conducted in summer 2011 in Ahmedabad, Gujarat, India. Indicators of heat exposure, susceptibility to heat illness, and adaptive capacity, all of which feed into heat vulnerability, was assessed through a cross-sectional household survey using randomized multistage cluster sampling. Associations between heat-related morbidity and vulnerability factors were identified using multivariate logistic regression with generalized estimating equations to account for clustering effects. Age, preexisting medical conditions, work location, and access to health information and resources were associated with self-reported heat illness. Several of these variables were unique to this study. As sociodemographics, occupational heat exposure, and access to resources were shown to increase vulnerability, future interventions (e.g., health education) might target specific populations among Ahmedabad urban slum dwellers to reduce vulnerability to extreme heat. Surveillance and evaluations of future interventions may also be worthwhile.

Collaboration


Dive into the Perry E. Sheffield's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gulrez Shah Azhar

Public Health Foundation of India

View shared research outputs
Top Co-Authors

Avatar

Kim Knowlton

Natural Resources Defense Council

View shared research outputs
Top Co-Authors

Avatar

Maida P. Galvez

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Kazuhiko Ito

New York City Department of Health and Mental Hygiene

View shared research outputs
Top Co-Authors

Avatar

Dileep Mavalankar

Public Health Foundation of India

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anjali Jaiswal

Natural Resources Defense Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge