Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Perry H. Doane is active.

Publication


Featured researches published by Perry H. Doane.


Journal of Dairy Science | 2009

Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows.

Shawn S. Donkin; Stephanie L. Koser; H.M. White; Perry H. Doane; Michael J. Cecava

Growth of the corn ethanol industry has created a need for alternatives to corn for lactating dairy cows. Concurrent expansion in soydiesel production is expected to increase availability and promote favorable pricing for glycerol, a primary co-product material. The objective of this study was to determine the feeding value of glycerol as a replacement for corn in diets fed to lactating dairy cattle. Sixty lactating Holstein cows housed in individual tie stalls were fed a base diet consisting of corn silage, legume forages, corn grain, soyhulls, roasted soybeans, and protein supplements. After a 2-wk acclimation period, cows were fed diets containing 0, 5, 10, or 15% refined glycerol for 56 d. Cows were milked twice daily and weekly milk samples were collected. Milk production was 36.3, 37.2, 37.9, and 36.2 +/- 1.6 kg/d and feed intake was 23.8, 24.6, 24.8, and 24.0 +/- 0.7 kg/d for 0, 5, 10, and 15% glycerol treatments, respectively, and did not differ except for a modest reduction in feed intake during the first 7 d of the trial for 15% glycerol (treatment x time effect). Milk composition was not altered by glycerol feeding except that milk urea nitrogen was decreased from 12.5 +/- 0.4 to 10.2 +/- 0.4 mg/dL with glycerol addition. Cows fed diets containing 10 and 15% glycerol gained more weight than those fed rations containing 0 or 5% glycerol but body condition scores did not differ with glycerol feeding. The data indicate that glycerol is a suitable replacement for corn grain in diets for lactating dairy cattle and that it may be included in rations to a level of at least 15% of dry matter without adverse effects on milk production or milk composition.


Journal of Dairy Science | 2011

Replacing corn with glycerol in diets for transition dairy cows.

E.R. Carvalho; N.S. Schmelz-Roberts; H.M. White; Perry H. Doane; S.S. Donkin

Expansion of the biofuels industry has increased the availability of glycerol as an alternative feed for dairy cows. The objective of this study was to determine the effects of glycerol on feed intake, milk production, rumen volatile fatty acids, and metabolic parameters in transition dairy cows. Multiparous Holstein cows were fed diets containing either high-moisture corn (n=11) or glycerol (n=12) from -28 to +56 d relative to calving. Glycerol was included at 11.5 and 10.8% of the ration dry matter for the pre- and postpartum diets, respectively. Prepartum feed intake was not changed by glycerol feeding (14.9 vs. 14.6 kg/d, control vs. glycerol) nor did postpartum feed intake differ (19.8 vs. 20.7 kg/d, control vs. glycerol). Overall milk yield did not differ (35.8 vs. 37 kg/d, control vs. glycerol) and milk composition, milk urea nitrogen, somatic cells, and energy balance were not different with glycerol feeding. Blood glucose content was decreased in cows fed glycerol during the prepartum period (59.1 vs. 53.4 mg/dL), and β-hydroxybutyrate concentration was increased (0.58 vs. 0.82 mmol/L, control vs. glycerol). Concentrations of blood nonesterified fatty acids did not differ between the treatment groups, and no response to glycerol for blood metabolites during the postpartum period was observed. Total rumen volatile fatty acid concentrations (mmol/L) did not differ between treatments, but proportions of rumen propionate and butyrate were greater for cows fed glycerol (22.7 vs. 28.6% of propionate, control vs. glycerol; and 11.5 vs. 15.3% of butyrate, control vs. glycerol) at the expense of acetate (61.4 vs. 51.5%, control vs. glycerol). These data indicate that glycerol is a suitable replacement for corn grain in diets for transition dairy cows.


Journal of Dairy Science | 2014

The effects of supplementation with a blend of cinnamaldehyde and eugenol on feed intake and milk production of dairy cows

Emma Wall; Perry H. Doane; Shawn S. Donkin; David Bravo

Plant extracts (PE) are naturally occurring chemicals in plants, and many of these molecules have been reported to influence production efficiency of dairy and beef animals. Two experiments were conducted to determine the effect of a PE additive (CE; an encapsulated blend of cinnamaldehyde and eugenol) on the milk production performance of lactating dairy cows across a range of doses. In experiment 1, 32 Holstein multi- and primiparous dairy cows in mid-lactation were assigned to no additive or supplementation with CE (350mg/d; n=16 cows/treatment) for 6 wk. In experiment 2, 48 Holstein multi- and primiparous dairy cows were assigned to no additive or supplementation with CE (200, 400, or 600mg/d; n=12 animals/treatment) for 8 wk. A 1-wk covariate period was included in both experiments. In both experiments, individual dry matter intake (DMI), milk production, milk composition, and somatic cell count were recorded daily. In experiment 1, CE was associated with an increase in DMI in both parity groups but an increase in milk production of multiparous cows only. In experiment 2, milk yield of multiparous cows was decreased at the 2 highest doses, whereas milk yield of primiparous cows was increased at the low and high doses of CE. These responses were accompanied by similar changes in DMI; therefore, CE did not affect feed efficiency. We observed no effect of CE on SCC or milk composition; however, treatment by parity interactions were detected for each of these variables that have not been described previously. Based on the results of these experiments, we conclude that a blend of cinnamaldehyde and eugenol can increase DMI and milk production in lactating dairy cows. In addition, environmental factors appear to influence the response to CE, including dose and parity, and these should be explored further.


Journal of Dairy Science | 2016

Short communication: Regulation of hepatic gluconeogenic enzymes by dietary glycerol in transition dairy cows

H.M. White; E.R. Carvalho; Stephanie L. Koser; N.S. Schmelz-Roberts; L.M. Pezzanite; A.C. Slabaugh; Perry H. Doane; Shawn S. Donkin

Nutritional status and glucose precursors are known regulators of gluconeogenic gene expression. Glycerol can replace corn in diets fed to dairy cows and use of glycerol is linked to increased rumen propionate production. The effect of dietary glycerol on the regulation of gluconeogenic enzymes is unknown. The objective of this study was to examine the effect of glycerol on expression of pyruvate carboxylase (PC), cytosolic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-C and PEPCK-M), and glucose-6-phosphatase. Twenty-six multiparous Holstein cows were fed either a control diet or a diet where high-moisture corn was replaced by glycerol from -28 through +56 d relative to calving (DRTC). Liver tissue was collected via percutaneous liver biopsy at -28, -14, +1, +14, +28, and +56 DRTC for RNA analysis. Expression of PC mRNA increased 6-fold at +1 and 4-fold at +14 DRTC relative to precalving levels. Dietary glycerol did not alter expression of PC mRNA expression. Expression of PEPCK-C increased 2.5-fold at +14 and 3-fold at +28 DRTC compared with +1 DRTC. Overall, dietary glycerol increased PEPCK-C expression compared with that of cows fed control diets. The ratio of PC to PEPCK-C was increased 6.3-fold at +1 DRTC compared with precalving and tended to be decreased in cows fed glycerol. We detected no effect of diet or DRTC on PEPCK-M or glucose-6-phosphatase mRNA, and there were no interactions of dietary treatment and DRTC for any transcript measured. Substituting corn with glycerol increased the expression of PEPCK-C mRNA during transition to lactation and suggests that dietary energy source alters hepatic expression. The observed increase in PEPCK-C expression with glycerol feeding may indicate regulation of hepatic gene expression by changes in rumen propionate production.


Journal of Dairy Science | 2017

Hepatic expression of aminoadipate semialdehyde synthase is unchanged by postruminal lysine supply in lactating dairy cows

H.A. Tucker; M.D. Hanigan; J. Escobar; Perry H. Doane; S.S. Donkin

Lysine supply is potentially limiting for milk production in dairy cows. The availability of Lys to the mammary gland and other tissues is a function of the quantity of metabolizable Lys supplied and Lys catabolism by the liver. Likewise, Lys catabolism may be influenced by Lys supply. This study evaluated the effect of increased postruminal Lys supply on the expression of aminoadipate semialdehyde synthase (AASS, a committing step in Lys catabolism in the liver) and ornithine transcarbamoylase and argininosuccinate synthase (key urea cycle enzymes that are responsive to protein supply). Eight multiparous peak Holstein cows were used in a replicated 4 × 4 Latin square. Cows were fed a Lys-limiting ration and infused postruminally with 0, 9, 27, or 63 g/d of Lys. The study consisted of 10 d of pretreatment followed by 10 d of Lys infusion. On the last day of each period, liver and milk samples were collected for mRNA analysis, and blood samples were collected for analysis of amino acids and Lys metabolites. Milk protein percent increased by 5.9%, plasma Lys increased by 74%, and α-aminoadipic acid increased by 51% with postruminal infusion of 63 g/d Lys compared with 0 g/d. Expression of AASS, ornithine transcarbamoylase, and argininosuccinate synthase mRNA in liver did not differ with postruminal infusion of Lys. Milk fat globule mRNA for major milk proteins and AASS were not affected by Lys infusion. Postruminal infusion of Lys resulted in an 86% greater increase in AASS mRNA in the liver compared with mammary mRNA. These changes suggest that hepatic Lys metabolism is not responsive to Lys supply at the transcription level, and that the availability of Lys to extrahepatic tissue may be determined by hepatic Lys metabolism.


Archive | 2006

Process for the production of animal feed and ethanol and novel animal feed

Charles Abbas; Thomas P. Binder; Kyle E. Beery; Michael J. Cecava; Perry H. Doane; David P. Holzgraefe; Leif Solheim


Archive | 2008

Method of Preparing More Digestible Animal Feed

Charles Abbas; Wu-Li Bao; Kyle E. Beery; Michael J. Cecava; Perry H. Doane; James L. Dunn; David P. Holzgraefe


Archive | 2006

Animal feed compositions capable of reducing the incidence of fescue toxicosis in mammals

Stephanie S. Block; Michael J. Cecava; Perry H. Doane


Proceedings of the 2007 Tri-State Dairy Nutrition Conference, Fort Wayne, Indiana, USA, 24-25 April, 2007 | 2007

Glycerol as a Feed Ingredient in Dairy Rations

Shawn S. Donkin; Perry H. Doane


Archive | 2011

Method of producing sugars using a combination of acids to selectively hydrolyze hemicellulosic and cellulosic materials

Thomas P. Binder; Paul D. Bloom; Perry H. Doane; Chicheng Ma

Collaboration


Dive into the Perry H. Doane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chicheng Ma

Archer Daniels Midland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge