Perttu Salo
National Institute for Health and Welfare
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Perttu Salo.
PLOS Genetics | 2009
Melanie Kolz; Toby Johnson; Serena Sanna; Alexander Teumer; Veronique Vitart; Markus Perola; Massimo Mangino; Eva Albrecht; Chris Wallace; Martin Farrall; Åsa Johansson; Dale R. Nyholt; Yurii S. Aulchenko; Jacques S. Beckmann; Sven Bergmann; Murielle Bochud; Morris J. Brown; Harry Campbell; John M. C. Connell; Anna F. Dominiczak; Georg Homuth; Claudia Lamina; Mark I. McCarthy; Thomas Meitinger; Vincent Mooser; Patricia B. Munroe; Matthias Nauck; John F. Peden; Holger Prokisch; Perttu Salo
Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.2×10−201), ABCG2 (p = 3.1×10−26), SLC17A1 (p = 3.0×10−14), SLC22A11 (p = 6.7×10−14), SLC22A12 (p = 2.0×10−9), SLC16A9 (p = 1.1×10−8), GCKR (p = 1.4×10−9), LRRC16A (p = 8.5×10−9), and near PDZK1 (p = 2.7×10−9). Identified variants were analyzed for gender differences. We found that the minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated with DL-carnitine (p = 4.0×10−26) and propionyl-L-carnitine (p = 5.0×10−8) concentrations, which in turn were associated with serum UA levels (p = 1.4×10−57 and p = 8.1×10−54, respectively), forming a triangle between SNP, metabolites, and UA levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels.
Nature Genetics | 2009
Nicole Soranzo; Tim D. Spector; Massimo Mangino; Brigitte Kühnel; Augusto Rendon; Alexander Teumer; Christina Willenborg; Benjamin J. Wright; Li Chen; Mingyao Li; Perttu Salo; Benjamin F. Voight; Philippa Burns; Roman A. Laskowski; Yali Xue; Stephan Menzel; David Altshuler; John R. Bradley; Suzannah Bumpstead; Mary-Susan Burnett; Joseph M. Devaney; Angela Döring; Roberto Elosua; Stephen E. Epstein; Wendy N. Erber; Mario Falchi; Stephen F. Garner; Mohammed J. R. Ghori; Alison H. Goodall; Rhian Gwilliam
The number and volume of cells in the blood affect a wide range of disorders including cancer and cardiovascular, metabolic, infectious and immune conditions. We consider here the genetic variation in eight clinically relevant hematological parameters, including hemoglobin levels, red and white blood cell counts and platelet counts and volume. We describe common variants within 22 genetic loci reproducibly associated with these hematological parameters in 13,943 samples from six European population-based studies, including 6 associated with red blood cell parameters, 15 associated with platelet parameters and 1 associated with total white blood cell count. We further identified a long-range haplotype at 12q24 associated with coronary artery disease and myocardial infarction in 9,479 cases and 10,527 controls. We show that this haplotype demonstrates extensive disease pleiotropy, as it contains known risk loci for type 1 diabetes, hypertension and celiac disease and has been spread by a selective sweep specific to European and geographically nearby populations.
Genome Biology | 2011
Anna-Maija Sulonen; Pekka Ellonen; Henrikki Almusa; Maija Lepistö; Samuli Eldfors; Sari Hannula; Timo Miettinen; Henna Tyynismaa; Perttu Salo; Caroline Heckman; Heikki Joensuu; Taneli Raivio; Anu Suomalainen; Janna Saarela
BackgroundTechniques enabling targeted re-sequencing of the protein coding sequences of the human genome on next generation sequencing instruments are of great interest. We conducted a systematic comparison of the solution-based exome capture kits provided by Agilent and Roche NimbleGen. A control DNA sample was captured with all four capture methods and prepared for Illumina GAII sequencing. Sequence data from additional samples prepared with the same protocols were also used in the comparison.ResultsWe developed a bioinformatics pipeline for quality control, short read alignment, variant identification and annotation of the sequence data. In our analysis, a larger percentage of the high quality reads from the NimbleGen captures than from the Agilent captures aligned to the capture target regions. High GC content of the target sequence was associated with poor capture success in all exome enrichment methods. Comparison of mean allele balances for heterozygous variants indicated a tendency to have more reference bases than variant bases in the heterozygous variant positions within the target regions in all methods. There was virtually no difference in the genotype concordance compared to genotypes derived from SNP arrays. A minimum of 11× coverage was required to make a heterozygote genotype call with 99% accuracy when compared to common SNPs on genome-wide association arrays.ConclusionsLibraries captured with NimbleGen kits aligned more accurately to the target regions. The updated NimbleGen kit most efficiently covered the exome with a minimum coverage of 20×, yet none of the kits captured all the Consensus Coding Sequence annotated exons.
Nature Communications | 2014
Kirsi Auro; Anni Joensuu; Krista Fischer; Johannes Kettunen; Perttu Salo; Hannele Mattsson; Marjo Niironen; Jaakko Kaprio; Johan G. Eriksson; Terho Lehtimäki; Olli T. Raitakari; Antti Jula; Aila Tiitinen; Matti Jauhiainen; Pasi Soininen; Antti J. Kangas; Mika Kähönen; Aki S. Havulinna; Mika Ala-Korpela; Veikko Salomaa; Andres Metspalu; Markus Perola
The ageing of the global population calls for a better understanding of age-related metabolic consequences. Here we report the effects of age, sex and menopause on serum metabolites in 26,065 individuals of Northern European ancestry. Age-specific metabolic fingerprints differ significantly by gender and, in females, a substantial atherogenic shift overlapping the time of menopausal transition is observed. In meta-analysis of 10,083 women, menopause status associates with amino acids glutamine, tyrosine and isoleucine, along with serum cholesterol measures and atherogenic lipoproteins. Among 3,204 women aged 40-55 years, menopause status associates additionally with glycine and total, monounsaturated, and omega-7 and -9 fatty acids. Our findings suggest that, in addition to lipid alterations, menopause may contribute to future metabolic and cardiovascular risk via influencing amino-acid concentrations, adding to the growing evidence of the importance of amino acids in metabolic disease progression. These observations shed light on the metabolic consequences of ageing, gender and menopause at the population level.
PLOS Genetics | 2012
Emília Ilona Gaál; Perttu Salo; Kati Kristiansson; Karola Rehnström; Johannes Kettunen; Antti-Pekka Sarin; Mika Niemelä; Antti Jula; Olli T. Raitakari; Terho Lehtimäki; Johan G. Eriksson; Elisabeth Widen; Murat Gunel; Mitja I. Kurki; Mikael von und zu Fraunberg; Juha E. Jääskeläinen; Juha Hernesniemi; Marjo-Riitta Järvelin; Anneli Pouta; Veikko Salomaa; Aarno Palotie; Markus Perola; Christopher Newton-Cheh
Although genome-wide association studies (GWAS) have identified hundreds of complex trait loci, the pathomechanisms of most remain elusive. Studying the genetics of risk factors predisposing to disease is an attractive approach to identify targets for functional studies. Intracranial aneurysms (IA) are rupture-prone pouches at cerebral artery branching sites. IA is a complex disease for which GWAS have identified five loci with strong association and a further 14 loci with suggestive association. To decipher potential underlying disease mechanisms, we tested whether there are IA loci that convey their effect through elevating blood pressure (BP), a strong risk factor of IA. We performed a meta-analysis of four population-based Finnish cohorts (nFIN = 11 266) not selected for IA, to assess the association of previously identified IA candidate loci (n = 19) with BP. We defined systolic BP (SBP), diastolic BP, mean arterial pressure, and pulse pressure as quantitative outcome variables. The most significant result was further tested for association in the ICBP-GWAS cohort of 200 000 individuals. We found that the suggestive IA locus at 5q23.2 in PRDM6 was significantly associated with SBP in individuals of European descent (pFIN = 3.01E-05, pICBP-GWAS = 0.0007, pALL = 8.13E-07). The risk allele of IA was associated with higher SBP. PRDM6 encodes a protein predominantly expressed in vascular smooth muscle cells. Our study connects a complex disease (IA) locus with a common risk factor for the disease (SBP). We hypothesize that common variants in PRDM6 can contribute to altered vascular wall structure, hence increasing SBP and predisposing to IA. True positive associations often fail to reach genome-wide significance in GWAS. Our findings show that analysis of traditional risk factors as intermediate phenotypes is an effective tool for deciphering hidden heritability. Further, we demonstrate that common disease loci identified in a population isolate may bear wider significance.
BMC Bioinformatics | 2016
Said el Bouhaddani; Jeanine J. Houwing-Duistermaat; Perttu Salo; Markus Perola; Geurt Jongbloed; Hae-Won Uh
BackgroundRapid computational and technological developments made large amounts of omics data available in different biological levels. It is becoming clear that simultaneous data analysis methods are needed for better interpretation and understanding of the underlying systems biology. Different methods have been proposed for this task, among them Partial Least Squares (PLS) related methods. To also deal with orthogonal variation, systematic variation in the data unrelated to one another, we consider the Two-way Orthogonal PLS (O2PLS): an integrative data analysis method which is capable of modeling systematic variation, while providing more parsimonious models aiding interpretation.ResultsA simulation study to assess the performance of O2PLS showed positive results in both low and higher dimensions. More noise (50 % of the data) only affected the systematic part estimates. A data analysis was conducted using data on metabolomics and transcriptomics from a large Finnish cohort (DILGOM). A previous sequential study, using the same data, showed significant correlations between the Lipo-Leukocyte (LL) module and lipoprotein metabolites. The O2PLS results were in agreement with these findings, identifying almost the same set of co-varying variables. Moreover, our integrative approach identified other associative genes and metabolites, while taking into account systematic variation in the data. Including orthogonal components enhanced overall fit, but the orthogonal variation was difficult to interpret.ConclusionsSimulations showed that the O2PLS estimates were close to the true parameters in both low and higher dimensions. In the presence of more noise (50 %), the orthogonal part estimates could not distinguish well between joint and unique variation. The joint estimates were not systematically affected. Simultaneous analysis with O2PLS on metabolome and transcriptome data showed that the LL module, together with VLDL and HDL metabolites, were important for the metabolomic and transcriptomic relation. This is in agreement with an earlier study. In addition more gene expression and metabolites are identified being important for the joint covariation.
Journal of Thrombosis and Haemostasis | 2013
Marja Puurunen; Perttu Salo; S. Engelbarth; Kaija Javela; Markus Perola
It has been shown that some antithrombin (AT) activity assays do not correctly detect inherited type II AT deficiency, but erroneously classify these patients as normal.
Tissue Antigens | 2014
Efthymia Vlachopoulou; Elisa Lahtela; Annika Wennerström; Aki S. Havulinna; Perttu Salo; Markus Perola; Veikko Salomaa; Markku S. Nieminen; Juha Sinisalo; Marja-Liisa Lokki
Owing to the vast amount of alleles, high-resolution human leukocyte antigen (HLA) typing is expensive and time-consuming. Scientists have attempted to develop computational approaches to define HLA alleles with high confidence. We tested the reliability of HLA*IMP and SNP2HLA for imputing HLA-DRB1 alleles in a Finnish material (n=161). The per-individual success rates varied between 16.68% and 25.4% using both softwares. One of the most prominent example was HLA-DRB1*01:01 allele showing approximately a 30% success rate while being the most common wrongly imputed allele. In Finland, isolation and migration history have shaped the gene pool narrower showing HLA haplotype frequencies typical to the Finnish population when compared to Europeans. The imputation success for HLA-DRB1 alleles was very low pointing to the importance of population-specific reference material.
Endocrine-related Cancer | 2013
Valtter Benjamin Virtanen; Eero Pukkala; Reetta Kivisaari; Perttu Salo; Antti Koivusalo; Johanna Arola; Päivi J Miettinen; Risto Rintala; Markus Perola; Mikko Pakarinen
The objective of this study was to assess the occurrence of thyroid cancer and co-occurring RET mutations in a population-based cohort of adult Hirschsprung disease (HD) patients. All 156 patients operated for HD in a tertiary center during 1950-1986 were followed for thyroid malignancies up to 2010 through the nationwide Finnish Cancer Registry. Ninety-one individuals participated in clinical and genetic screening, which included serum calcitonin and thyroid ultrasound (US) with cytology. Exons 10, 11, 13, and 16 were sequenced in all, and all exons of RET in 43 of the subjects, including those with thyroid cancer, RET mutations, suspicious clinical findings, and familial or long-segment disease. Through the cancer registry, two cases (aged 35 and 37 years) of medullary thyroid cancer (MTC) were observed; the incidence for MTC was 340-fold (95% CI 52-1600) compared with average population. These individuals had C611R and C620R mutations in exon 10. One papillary thyroid cancer without RET mutations was detected by clinical screening. Four subjects (aged 31-50 years) with co-occurring RET mutations in exons 10 (C609R; n=1) and 13 (Y791F, n=3) had sporadic short-segment HD with normal thyroid US and serum calcitonin. Three novel mutations and five single-nucleotide polymorphisms were found outside exons 10 and 13 without associated signs of thyroid cancer. MTC-associated RET mutations were restricted to exons 10 and 13 affecting ∼5% of unselected adults with HD. Clinical thyroid assessment did not improve accuracy of genetic screening, which should not be limited to patients with familial or long-segment disease.
Pharmacogenetics and Genomics | 2013
Jussi P. Posti; Perttu Salo; Saku Ruohonen; Laura Valve; Mordechai Muszkat; Gbenga G. Sofowora; Daniel Kurnik; C.M. Stein; Markus Perola; Mika Scheinin; Amir Snapir
Objectives &agr;2-Adrenoceptors (&agr;2-AR) mediate both constriction and dilatation of blood vessels. There is considerable interindividual variability in dorsal hand vein (DHV) constriction responses to &agr;2-AR agonist activation. Genetic factors appear to contribute significantly to this variation. The present study was designed to identify the genetic factors contributing toward the interindividual variability in &agr;2-AR-mediated vascular constriction induced by the selective &agr;2-AR agonist dexmedetomidine. Methods DHV constriction responses to a local infusion of dexmedetomidine were assessed by measuring changes in vein diameter with a linear variable differential transformer. The outcome variable for constriction was log-transformed dexmedetomidine ED50. A genome-wide association study (GWAS) of 433 378 single-nucleotide polymorphisms (SNPs) was carried out for determining the sensitivity of DHV responses in 64 healthy Finnish individuals. Twenty SNPs were selected on the basis of the GWAS results and their associations with the ED50 of dexmedetomidine were tested in an independent North American study population of 68 healthy individuals. Results In both study populations (GWAS and replication samples), the SNP rs9922316 in the gene for protein kinase C type &bgr; was consistently associated with dexmedetomidine ED50 for DHV constriction (unadjusted P=0.00016 for the combined population). Conclusion Genetic variation in protein kinase C type &bgr; may contribute toward the interindividual variation in DHV constriction responses to &agr;2-AR activation by the agonist dexmedetomidine.