Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter A. Cawood is active.

Publication


Featured researches published by Peter A. Cawood.


Precambrian Research | 2001

Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution

Guochun Zhao; Simon A. Wilde; Peter A. Cawood; Min Sun

An examination of lithological, geochemical, geochronological, structural and metamorphic P–T path data suggests that the basement of the North China Craton can be divided into Eastern and Western Blocks, separated by major crustal boundaries that roughly correspond with the limits of a 300 km wide zone, called the Trans-North China Orogen. The Eastern Block consists predominantly of Late Archean domiform tonalitic–trondhjemitic–granodioritic (TTG) batholiths surrounded by anastomosing networks and linear belts of open to tight synforms of minor volcanic and sedimentary rocks metamorphosed from greenschist to granulite facies at ∼2.5 Ga, with anticlockwise P–T paths. Some Early to Middle Archean rocks are locally present in the Eastern Block, but their tectonic history is unclear due to reworking by the 2.5 Ga tectonothermal event. The Western Block has a Late Archean assemblage, structural style and metamorphic history similar to that of the Eastern Block, but it differs in the absence of early to middle Archean assemblages and in being overlain by and interleaved with Paleoproterozoic khondalites, which were affected by a ∼1.8 Ga metamorphic event involving clockwise P–T paths. A mantle plume model is proposed for the formation and evolution of Late Archean basement rocks in the Eastern and Western Blocks based on a combination of extensive exposure of TTG gneisses, affinities of mafic rocks to continental tholeiitic basalts, presence of voluminous komatiitic rocks, dominant diaprism-related domiform structures, anticlockwise P–T paths, and a short time span from the primary emplacement of TTG and ultramafic to mafic rocks until the onset of regional metamorphism. Between the two blocks is the Trans-North China Orogen which is bounded by two major fault systems and is composed of Late Archean to Paleoproterozoic TTG gneisses and granitoids, interleaved with abundant sedimentary and volcanic rocks that are geochemically interpreted as having developed in magmatic arc and intra-arc basin environments. These rocks underwent multiple phases of compressional deformation and peak high-pressure metamorphism followed by rapid exhumation during the Late Paleoproterozoic at ∼1.8 Ga as a result of collision between the Eastern and Western Blocks, resulting in the amalgamation of the North China Craton.


Earth-Science Reviews | 2002

Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent

Guochun Zhao; Peter A. Cawood; Simon A. Wilde; Min Sun

Abstract Available lithostratigraphic, tectonothermal, geochronological and paleomagnetic data from 2.1–1.8 Ga collisional orogens and related cratonic blocks around the world have established connections between South America and West Africa; Western Australia and South Africa; Laurentia and Baltica; Siberia and Laurentia; Laurentia and Central Australia; East Antarctica and Laurentia, and North China and India. These links are interpreted to indicate the presence of a supercontinent existing before Rodinia, referred to herein as Columbia, a name recently proposed by Rogers and Santosh [Gondwana Res. 5 (2002) 5] for a Paleo-Mesoproterozoic supercontinent. In this supercontinent, the Archean to Paleoproterozoic cratonic blocks were welded by the global 2.1–1.8 Ga collisional belts. The cratonic blocks in South America and West Africa were welded by the 2.1–2.0 Ga Transamazonian and Eburnean Orogens; the Kaapvaal and Zimbabwe Cratons in southern Africa were collided along the ∼2.0 Ga Limpopo Belt; the cratonic blocks of Laurentia were sutured along the 1.9–1.8 Ga Trans-Hudson, Penokean, Taltson–Thelon, Wopmay, Ungava, Torngat and Nagssugtoqidian Orogens; the Kola, Karelia, Volgo–Uralia and Sarmatia (Ukrainian) Cratons in Baltica (Eastern Europe) were joined by the 1.9–1.8 Ga Kola–Karelia, Svecofennian, Volhyn–Central Russian and Pachelma Orogens; the Anabar and Aldan Cratons in Siberia were connected by the 1.9–1.8 Ga Akitkan and Central Aldan Orogens; the East Antarctica and an unknown continental block were joined by the Transantarctic Mountains Orogen; the South and North Indian Blocks were amalgamated along the Central Indian Tectonic Zone; and the Eastern and Western Blocks of the North China Craton were welded together by the ∼1.85 Ga Trans-North China Orogen. The existence of Columbia is consistent with late Paleoproterozoic to Mesoproterozoic sedimentary and magmatic records. The ∼2.0 Ga fluvio-deltaic deposits have been found in all cratonic blocks in South America and West Africa, and they are interpreted to have formed within foreland basins during the latest stage of the 2.1–2.0 Ga Transamazonian–Eburnean collisional event that resulted in the assembly of South America and West Africa. In Laurentia and Baltica, a 1.8–1.30 Ga subduction-related magmatic belt extends from Arizona through Colorado, Michigan, South Greenland, Sweden and Finland to western Russia. The occurrence of temporally and petrologically similar rocks across a distance of thousands of kilometers between these continents supports the existence of a Paleo-Mesoproterozoic supercontinent. Accretion, attenuation and final breakup of this supercontinent were associated with the emplacement of 1.6–1.2 Ga anorogenic anorthosite-mangerite-charnockite-rapakivi (AMCR) suites, 1.4–1.2 Ga mafic dyke swarms and the intrusion of kimberlite–lamproite–carbonatite suites throughout much of the supercontinent.


Precambrian Research | 2000

Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution

Guochun Zhao; Peter A. Cawood; Simon A. Wilde; Min Sun; Liangzhao Lu

Abstract Lithological, structural, metamorphic and geochronological data for the North China Craton enable its division into the Western and Eastern Blocks of Archean to Paleoproterozoic age separated by a north–south trending Paleoproterozoic orogenic belt: the Central Zone. The Central Zone is divisible into a series of low- to medium-grade granite–greenstone belts and high-grade metamorphic terrains containing reworked Archean material and late Archean to Paleoproterozoic juvenile igneous and sedimentary rocks which developed in intra-continental magmatic arc and intra-arc basin environments bordering the western margin of the Eastern Block. The basement rocks from the Central Zone, regardless of their protolith age, composition and metamorphic grade, record a metamorphic history characterized by nearly isothermal decompression (M2) and then retrogressive cooling (M3) following peak metamorphism (M1). The decompression textures are represented by worm-like hypersthene+plagioclase symplectites or clinopyroxene+orthopyroxene+plagioclase coronas in mafic granulites, hornblende/cummingtonite+plagioclase symplectites in amphibolites, and cordierite coronas and cordierite+orthopyroxene or cordierite+spinel symplectites in pelitic rocks. The cooling textures are shown by hornblende+plagioclase symplectites in mafic granulites, chlorite+epidote+mica retrogressive rims around garnet or hornblende grains in amphibolites, and biotite+K-feldspar±muscovite±magnetite replacing garnet, cordierite and sillimanite in pelitic gneisses. These textural relations and their P–T estimates define near-isothermal decompressional clockwise P–T paths, which, in combination with lithological, structural and geochronological constraints, are in accord with collision between the Eastern and Western Blocks of the North China Craton at ∼1.8 Ga.


Geological Society, London, Special Publications | 2009

Accretionary orogens through Earth history

Peter A. Cawood; Alfred Kröner; William J. Collins; Timothy M. Kusky; Walter D. Mooney; Brian F. Windley

Abstract Accretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero.


International Geology Review | 1998

Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting

Guochun Zhao; Simon A. Wilde; Peter A. Cawood; Liangzhao Lu

The basement rocks in the eastern zone of the North China craton are composed predominantly of pretectonic tonalitic-trondhjemitic-granodioritic gneisses and syntectonic granitoids, with rafts of supracrustal rocks consisting of ultramafic to felsic volcanic and sedimentary rocks, metamorphosed over a range of conditions from greenschist to granulite facies. Most mafic granulites, amphibolites, and some pelitic gneisses and schists preserve the prograde, peak, and post-peak textures. The prograde metamorphic stage is indicated by mineral inclusions within minerals of the peak stage, represented by the assemblages of hornblende + plagioclase + quartz ± biotite in mafic granulites, chlorite + actinolite + epidote + plagioclase + quartz in amphibolites, and biotite + plagioclase + quartz in pelitic gneisses. The peak stage is shown by assemblages of orthopyroxene + clinopyroxene + garnet + plagioclase + quartz in the mafic granulites, hornblende + plagioclase + quartz + garnet in garnetiferous amphibolites, ...


Journal of the Geological Society | 2010

The generation and evolution of the continental crust

Chris J. Hawkesworth; Bruno Dhuime; Anna Pietranik; Peter A. Cawood; Ais Kemp; Craig D. Storey

Abstract: The continental crust is the archive of the geological history of the Earth. Only 7% of the crust is older than 2.5 Ga, and yet significantly more crust was generated before 2.5 Ga than subsequently. Zircons offer robust records of the magmatic and crust-forming events preserved in the continental crust. They yield marked peaks of ages of crystallization and of crust formation. The latter might reflect periods of high rates of crust generation, and as such be due to magmatism associated with deep-seated mantle plumes. Alternatively the peaks are artefacts of preservation, they mark the times of supercontinent formation, and magmas generated in some tectonic settings may be preferentially preserved. There is increasing evidence that depletion of the upper mantle was in response to early planetary differentiation events. Arguments in favour of large volumes of continental crust before the end of the Archaean, and the thickness of felsic and mafic crust, therefore rely on thermal models for the progressively cooling Earth. They are consistent with recent estimates that the rates of crust generation and destruction along modern subduction zones are strikingly similar. The implication is that the present volume of continental crust was established 2–3 Ga ago.


Geology | 2012

Detrital zircon record and tectonic setting

Peter A. Cawood; Chris J. Hawkesworth; Bruno Dhuime

ABSTRACTDetrital zircon spectra refl ect the tectonic setting of the basin in which they are deposited. Convergent plate margins are charac-terized by a large proportion of zircon ages close to the depositional age of the sediment, whereas sediments in collisional, extensional and intracratonic settings contain greater proportions with older ages that refl ect the history of the underlying basement. These differences can be resolved by plotting the distribution of the difference between the measured crystallization ages (CA) of individual zircon grains present in the sediment and the depositional age (DA) of the sedi-ment. Application of this approach to successions where the original nature of the basin and/or the link to source are no longer preserved constrains the tectonic setting in which the sediment was deposited.INTRODUCTION Detrital zircons are a minor constituent of clastic sedimentary rocks, yet their physiochemical resilience and high concentrations of certain key trace elements means that they have become an important phase in sedimentary provenance analysis and in crustal evolution studies (e.g., Cawood et al., 2007b; Hawkesworth et al., 2010). Large numbers of in situ, high precision analyses of both igneous and detrital zircons are now available, and a striking feature of the zircon record is that it clusters into peaks of crystallization ages (Condie et al., 2009). Compilations of crys-tallization ages for detrital and igneous zircons show remarkably similar patterns of peaks and troughs, although with some variation in the rela-tive amplitude of the peaks (Condie et al., 2009). This coincidence sug-gests that the sedimentary record is a valid representation of the magmatic record (Hawkesworth et al., 2010).We establish that detrital zircon spectra have distinctive age distribu-tion patterns that refl ect the tectonic setting of the basin in which they are deposited. These patterns are principally controlled by (i) the volumes of magma generated in each tectonic setting and their preservation poten-tial, (ii) the ease with which magmatic and detrital zircons of various ages and origins become incorporated into the sedimentary record, and (iii) the record of old zircons incorporated into the sediment. These in turn provide a framework that can be used to constrain the tectonic setting of sedimen-tary packages. This approach distinguishes between three tectonic settings (i.e., convergent, collisional, and extensional), and it is most sensitive when the depositional age of the sediment investigated is well constrained. Basin setting will evolve with tectonic regime; for example, arc-continent or continent-continent collision will result in the evolution of convergent and extensional basins into collisional foreland basins. Hence the three settings distinguished herein are end-members, and the zircon age patterns associ-ated with each show a spectrum of distributions that merge and overlap rather than defi ne discrete fi elds. Discriminant plots developed for igneous rock geochemistry (e.g., Pearce and Cann, 1973) or sediment framework modes (e.g., Dickinson and Suczek, 1979) often have diffuse boundaries or overlap between fi elds, but remain important approaches in understanding and constraining tectonic setting. Equally important, exceptions to simple end-member classifi cations can provide insight into subtleties of tectonic process, such as outlined below for Avalonia in eastern North America.


Science | 2012

A Change in the Geodynamics of Continental Growth 3 Billion Years Ago

Bruno Dhuime; Chris J. Hawkesworth; Peter A. Cawood; Craig D. Storey

Continental Growth Spurts The appearance and persistence of continents through geologic time has influenced most processes on Earth, from the evolution of new species to the climate. The relative proportion of newly formed crust compared to reworked, or destroyed, older crust reveals which processes controlled continental growth. Based on the combined analyses of Hf-Pb and O isotopes in zircon minerals, Dhuime et al. (p. 1334) measured continuous but variable rates of new crustal production throughout Earths history. Increased rates of crustal destruction starting around 3 billion years ago coincide with the onset of subduction-drive plate tectonics, slowing down the overall rate of crustal growth. Isotopic analysis of zircons reveals the proportion of crust formed and destroyed on continents throughout Earth’s history. Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earth’s history. The oxygen isotopic composition of zircons, for which uranium-lead and hafnium isotopic data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics.


Geological Society of America Bulletin | 2001

Opening Iapetus: Constraints from the Laurentian margin in Newfoundland

Peter A. Cawood; Phil J.A. McCausland; Greg R. Dunning

Late Neoproterozoic to Early Cambrian geologic, geochronologic, and paleomagnetic data from along the Iapetus margin of Laurentia may be reconciled within a multistage rift history that involved an initial separation of Laurentia from the west Gondwana cratons ca. 570 Ma, followed by rifting of a further block or blocks from Laurentia ca. 540– 535 Ma into an already open Iapetus Ocean to establish the main passive-margin sequence in the Appalachians. Paleomagnetic data suggest that Laurentia rifted from Amazonia−Rio de la Plata cratons and began its northward movement ca. 570 Ma to produce a wide Iapetus Ocean by 550 Ma. Geologic data from the Newfoundland segment of the Laurentian margin provide evidence for a rift-drift transition ca. 540–535 Ma, as constrained by the youngest rift-related magmatism at 550.5 +3/–2 Ma (U/Pb zircon) for the Skinner Cove Formation and 555 +3/–5 Ma for the Lady Slipper pluton, and a late Early Cambrian age of ca. 525–520 Ma for the oldest drift-related sedimentation. Rifting between the Laurentia and the west Gondwana cratons was probably distributed among multiple rift systems that fostered the production of a number of terranes (such as the Argentine Precordillera, Oaxacan) as well as the Iapetus Ocean. Development of Laurentian-derived Iapetan terranes during the final breakout of Laurentia from Rodinia may have been facilitated by preexisting 760–700 Ma rift weaknesses and apparently rapidly changing plate vectors during latest Neoproterozoic time.


Journal of the Geological Society | 2007

Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia

Peter A. Cawood; Alexander A. Nemchin; R. A. Strachan; Tony Prave; Maarten Krabbendam

Tectonic processes associated with supercontinent cycles result in a variety of basin types, and the isotopic dating of detrital minerals within sedimentary sequences assists palaeogeographical reconstructions. Basins located along the Laurentia–Baltica margin prior to assembly of Rodinia at 1.2–1.0 Ga are dominated by zircon detritus derived from contemporaneous magmatic arcs. Basins formed during assembly are also dominated by zircon detritus with ages similar to that of sediment accumulation, reflecting syn-collisional magmatism and rapid exhumation of the developing Grenville–Sveconorwegian orogen. Post-collision intracratonic basins lack input from syn-depositional magmatism, and are dominated by significantly older detritus derived from the mountain range as well as its foreland. Basins formed during late Neoproterozoic to Cambrian breakup of Rodinia are divisible into two types. Those within the Caledonides lie on the Grenville–Sveconorwegian foreland and incorporate Archaean and Palaeoproterozoic detritus derived from the cratonic interior and Mesoproterozoic detritus derived from the eroded remnants of the orogen. In the Appalachian orogen, such basins are dominated by Mesoproterozoic detritus with older detritus forming only a minor component, suggesting restricted input from the cratonic interior as a result of either the Grenville orogen still forming a drainage divide or the formation of rift shoulders.

Collaboration


Dive into the Peter A. Cawood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuejun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuansheng Du

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Guochun Zhao

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiming Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yajun Xu

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Tohver

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge