Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter A. Hecker is active.

Publication


Featured researches published by Peter A. Hecker.


Journal of Molecular and Cellular Cardiology | 2009

Dietary ω-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition

Karen M. O'Shea; Ramzi J. Khairallah; Genevieve C. Sparagna; Wenhong Xu; Peter A. Hecker; Isabelle Robillard-Frayne; Christine Des Rosiers; Robert C. Murphy; Gary Fiskum; William C. Stanley

Consumption of omega-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA + DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA + DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospholipid composition, respiration, and sensitivity to mitochondrial permeability transition pore (MPTP) opening in normal and infarcted myocardium. Rats were subjected to sham surgery or myocardial infarction by coronary artery ligation (n=10-14), and fed a standard diet, or supplemented with EPA + DHA (2.3% of energy intake) for 12 weeks. EPA + DHA altered fatty acid composition of total mitochondrial phospholipids and cardiolipin by reducing arachidonic acid content and increasing DHA incorporation. EPA + DHA significantly increased calcium uptake capacity in both subsarcolemmal and intrafibrillar mitochondria from sham rats. This treatment effect persisted with the addition of cyclosporin A, and was not accompanied by changes in mitochondrial respiration or coupling, or cyclophilin D protein expression. Myocardial infarction resulted in heart failure as evidenced by LV dilation and contractile dysfunction. Infarcted LV myocardium had decreased mitochondrial protein yield and activity of mitochondrial marker enzymes, however respiratory function of isolated mitochondria was normal. EPA + DHA had no effect on LV function, mitochondrial respiration, or MPTP opening in rats with heart failure. In conclusion, dietary supplementation with EPA + DHA altered mitochondrial membrane phospholipid fatty acid composition in normal and infarcted hearts, but delayed MPTP opening only in normal hearts.


Journal of Lipid Research | 2013

Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction.

Hong Wang; Urmilla Sreenivasan; Dawei Gong; Kelly A. O'Connell; Erinne R. Dabkowski; Peter A. Hecker; Nicoleta Ionica; Manige Konig; Anup Mahurkar; Yezhou Sun; William C. Stanley; Carole Sztalryd

Presence of ectopic lipid droplets (LDs) in cardiac muscle is associated to lipotoxicity and tissue dysfunction. However, presence of LDs in heart is also observed in physiological conditions, such as when cellular energy needs and energy production from mitochondria fatty acid β-oxidation are high (fasting). This suggests that development of tissue lipotoxicity and dysfunction is not simply due to the presence of LDs in cardiac muscle but due at least in part to alterations in LD function. To examine the function of cardiac LDs, we obtained transgenic mice with heart-specific perilipin 5 (Plin5) overexpression (MHC-Plin5), a member of the perilipin protein family. Hearts from MHC-Plin5 mice expressed at least 4-fold higher levels of plin5 and exhibited a 3.5-fold increase in triglyceride content versus nontransgenic littermates. Chronic cardiac excess of LDs was found to result in mild heart dysfunction with decreased expression of peroxisome proliferator-activated receptor (PPAR)α target genes, decreased mitochondria function, and left ventricular concentric hypertrophia. Lack of more severe heart function complications may have been prevented by a strong increased expression of oxidative-induced genes via NF-E2-related factor 2 antioxidative pathway. Perilipin 5 regulates the formation and stabilization of cardiac LDs, and it promotes cardiac steatosis without major heart function impairment.


Circulation-heart Failure | 2013

Glucose 6-Phosphate Dehydrogenase Deficiency Increases Redox Stress and Moderately Accelerates the Development of Heart Failure

Peter A. Hecker; Vincenzo Lionetti; Rogerio F. Ribeiro; Sharad Rastogi; Bethany H. Brown; Kelly A. O’Connell; James W. Cox; Kadambari C. Shekar; Dionna M. Gamble; Hani N. Sabbah; Jane A. Leopold; Sachin A. Gupte; Fabio A. Recchia; William C. Stanley

Background— Glucose 6-phosphate dehydrogenase (G6PD) is the most common deficient enzyme in the world. In failing hearts, G6PD is upregulated and generates reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is used by the glutathione pathway to remove reactive oxygen species but also as a substrate by reactive oxygen species-generating enzymes. Therefore, G6PD deficiency might prevent heart failure by decreasing NADPH and reactive oxygen species production. Methods and Results— This hypothesis was evaluated in a mouse model of human G6PD deficiency (G6PDX mice, ≈40% normal activity). Myocardial infarction with 3 months follow-up resulted in left ventricular dilation and dysfunction in both wild-type and G6PDX mice but significantly greater end diastolic volume and wall thinning in G6PDX mice. Similarly, pressure overload induced by transverse aortic constriction (TAC) for 6 weeks caused greater left ventricular dilation in G6PDX mice than wild-type mice. We further stressed transverse aortic constriction mice by feeding a high fructose diet to increase flux through G6PD and reactive oxygen species production and again observed worse left ventricular remodeling and a lower ejection fraction in G6PDX than wild-type mice. Tissue content of lipid peroxidation products was increased in G6PDX mice in response to infarction and aconitase activity was decreased with transverse aortic constriction, suggesting that G6PD deficiency increases myocardial oxidative stress and subsequent damage. Conclusions— Contrary to our hypothesis, G6PD deficiency increased redox stress in response to infarction or pressure overload. However, we found only a modest acceleration of left ventricular remodeling, suggesting that, in individuals with G6PD deficiency and concurrent hypertension or myocardial infarction, the risk for developing heart failure is higher but limited by compensatory mechanisms.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease

Peter A. Hecker; Jane A. Leopold; Sachin A. Gupte; Fabio A. Recchia; William C. Stanley

Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the rate-determining step in the pentose phosphate pathway and produces NADPH to fuel glutathione recycling. G6PD deficiency is the most common enzyme deficiency in humans and affects over 400 million people worldwide; however, its impact on cardiovascular disease is poorly understood. The glutathione pathway is paramount to antioxidant defense, and G6PD-deficient cells do not cope well with oxidative damage. Limited clinical evidence indicates that G6PD deficiency may be associated with hypertension. However, there are also data to support a protective role of G6PD deficiency in decreasing the risk of heart disease and cardiovascular-associated deaths, perhaps through a decrease in cholesterol synthesis. Studies in G6PD-deficient (G6PDX) mice are mixed and provide evidence for both protective and deleterious effects. G6PD deficiency may provide a protective effect through decreasing cholesterol synthesis, superoxide production, and reductive stress. However, recent studies indicate that G6PDX mice are moderately more susceptible to ventricular dilation in response to myocardial infarction or pressure overload-induced heart failure. Furthermore, G6PDX hearts do not recover as well as nondeficient mice when faced with ischemia-reperfusion injury, and G6PDX mice are susceptible to the development of age-associated cardiac hypertrophy. Overall, the limited available data indicate a complex interplay in which adverse effects of G6PD deficiency may outweigh potential protective effects in the face of cardiac stress. Definitive clinical studies in large populations are needed to determine the effects of G6PD deficiency on the development of cardiovascular disease and subsequent outcomes.


Cardiovascular Research | 2012

High intake of saturated fat, but not polyunsaturated fat, improves survival in heart failure despite persistent mitochondrial defects

Tatiana Galvao; Bethany H. Brown; Peter A. Hecker; Kelly A. O'Connell; Karen M. O'Shea; Hani N. Sabbah; Sharad Rastogi; Caroline Daneault; Christine Des Rosiers; William C. Stanley

AIMS The impact of a high-fat diet on the failing heart is unclear, and the differences between polyunsaturated fatty acids (PUFA) and saturated fat have not been assessed. Here, we compared a standard low-fat diet to high-fat diets enriched with either saturated fat (palmitate and stearate) or PUFA (linoleic and α-linolenic acids) in hamsters with genetic cardiomyopathy. METHODS AND RESULTS Male δ-sarcoglycan null Bio TO2 hamsters were fed a standard low-fat diet (12% energy from fat), or high-fat diets (45% fat) comprised of either saturated fat or PUFA. The median survival was increased by the high saturated fat diet (P< 0.01; 278 days with standard diet and 361 days with high saturated fat)), but not with high PUFA (260 days) (n = 30-35/group). Body mass was modestly elevated (∼10%) in both high fat groups. Subgroups evaluated after 24 weeks had similar left ventricular chamber size, function, and mass. Mitochondrial oxidative enzyme activity and the yield of interfibrillar mitochondria (IFM) were decreased to a similar extent in all TO2 groups compared with normal F1B hamsters. Ca(2+)-induced mitochondrial permeability transition pore opening was enhanced in IFM in all TO2 groups compared with F1B hamsters, but to a significantly greater extent in those fed the high PUFA diet compared with the standard or high saturated fat diet. CONCLUSION These results show that a high intake of saturated fat improves survival in heart failure compared with a high PUFA diet or low-fat diet, despite persistent mitochondrial defects.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Effects of adiponectin deficiency on structural and metabolic remodeling in mice subjected to pressure overload.

Karen M. O'Shea; David J. Chess; Ramzi J. Khairallah; Sharad Rastogi; Peter A. Hecker; Hani N. Sabbah; Kenneth Walsh; William C. Stanley

Recent data suggest adiponectin, an adipocyte-derived hormone, affects development of heart failure in response to hypertension. Severe short-term pressure overload [1-3 wk of transverse aortic constriction (TAC)] in adiponectin(-/-) mice causes greater left ventricle (LV) hypertrophy than in wild-type (WT) mice, but conflicting results are reported regarding LV remodeling, with either increased or decreased LV end diastolic volume compared with WT mice. Here we assessed the effects of prolonged TAC on LV hypertrophy and remodeling. WT and adiponectin(-/-) mice were subjected to TAC and maintained for 6 wk. Regardless of strain, TAC induced similar LV hypertrophy ( approximately 70%) and upregulation of mRNA for heart failure marker genes. However, LV chamber size was dramatically different, with classic LV dilation in WT TAC mice but concentric LV hypertrophy in adiponectin(-/-) mice. LV end diastolic and systolic volumes were lower and ejection fraction higher in adiponectin(-/-) TAC mice compared with WT, indicating that adiponectin deletion prevented LV remodeling and deterioration in systolic function. The activities of marker enzymes of mitochondrial oxidative capacity were reduced in WT TAC mice by approximately 35%, whereas enzyme activities were maintained at sham levels in adiponectin(-/-) TAC mice. In conclusion, in WT mice, long-term pressure overload caused dilated LV hypertrophy accompanied by decreased activity of mitochondrial oxidative enzymes. Although adiponectin deletion did not affect LV hypertrophy, it prevented LV chamber remodeling and preserved mitochondrial oxidative capacity, suggesting that adiponectin plays a permissive role in mediating changes in cardiac structure and metabolism in response to pressure overload.


Journal of Molecular and Cellular Cardiology | 2014

Cardiac mitochondrial proteome dynamics with heavy water reveals stable rate of mitochondrial protein synthesis in heart failure despite decline in mitochondrial oxidative capacity

Kadambari C. Shekar; Ling Li; Erinne R. Dabkowski; Wenhong Xu; Rogerio F. Ribeiro; Peter A. Hecker; Fabio A. Recchia; Rovshan G. Sadygov; Belinda Willard; Takhar Kasumov; William C. Stanley

We recently developed a method to measure mitochondrial proteome dynamics with heavy water ((2)H2O)-based metabolic labeling and high resolution mass spectrometry. We reported the half-lives and synthesis rates of several proteins in the two cardiac mitochondrial subpopulations, subsarcolemmal and interfibrillar (SSM and IFM), in Sprague Dawley rats. In the present study, we tested the hypothesis that the mitochondrial protein synthesis rate is reduced in heart failure, with possible differential changes in SSM versus IFM. Six to seven week old male Sprague Dawley rats underwent transverse aortic constriction (TAC) and developed moderate heart failure after 22weeks. Heart failure and sham rats of the same age received heavy water (5% in drinking water) for up to 80days. Cardiac SSM and IFM were isolated from both groups and the proteins were separated by 1D gel electrophoresis. Heart failure reduced protein content and increased the turnover rate of several proteins involved in fatty acid oxidation, electron transport chain and ATP synthesis, while it decreased the turnover of other proteins, including pyruvate dehydrogenase subunit in IFM, but not in SSM. Because of these bidirectional changes, the average overall half-life of proteins was not altered by heart failure in both SSM and IFM. The kinetic measurements of individual mitochondrial proteins presented in this study may contribute to a better understanding of the mechanisms responsible for mitochondrial alterations in the failing heart.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival

Tatiana Galvao; Ramzi J. Khairallah; Erinne R. Dabkowski; Bethany H. Brown; Peter A. Hecker; Kelly A. O'Connell; Karen M. O'Shea; Hani N. Sabbah; Sharad Rastogi; Caroline Daneault; Christine Des Rosiers; William C. Stanley

Mitochondrial dysfunction in heart failure includes greater susceptibility to mitochondrial permeability transition (MPT), which may worsen cardiac function and decrease survival. Treatment with a mixture of the n3 polyunsaturated fatty acids (n3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is beneficial in heart failure patients and increases resistance to MPT in animal models. We assessed whether DHA and EPA have similar effects when given individually, and whether they prolong survival in heart failure. Male δ-sarcoglycan null cardiomyopathic hamsters were untreated or given either DHA, EPA, or a 1:1 mixture of DHA + EPA at 2.1% of energy intake. Treatment did not prolong survival: mean survival was 298 ± 15 days in untreated hamsters and 335 ± 17, 328 ± 14, and 311 ± 15 days with DHA, EPA, and DHA + EPA, respectively (n = 27-32/group). A subgroup of cardiomyopathic hamsters treated for 26 wk had impaired left ventricular function and increased cardiomyocyte apoptosis compared with normal hamsters, which was unaffected by n3 PUFA treatment. Evaluation of oxidative phosphorylation in isolated subsarcolemmal and interfibrillar mitochondria with substrates for complex I or II showed no effect of n3 PUFA treatment. On the other hand, interfibrillar mitochondria from cardiomyopathic hamsters were significantly more sensitive to Ca(2+)-induced MPT, which was completely normalized by treatment with DHA and partially corrected by EPA. In conclusion, treatment with DHA or EPA normalizes Ca(2+)-induced MPT in cardiomyopathic hamsters but does not prolong survival or improve cardiac function. This suggest that greater susceptibility to MPT is not a contributor to cardiac pathology and poor survival in heart failure.


Lipids in Health and Disease | 2010

ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

Karen M. O'Shea; David J. Chess; Ramzi J. Khairallah; Peter A. Hecker; Biao Lei; Kenneth Walsh; Christine Des Rosiers; William C. Stanley

BackgroundPathological left ventricular (LV) hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA) up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1) assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2) evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart.MethodsWild type (WT) and adiponectin-/- mice underwent transverse aortic constriction (TAC) and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated.ResultsTAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA.ConclusionThese findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Enhanced resistance to permeability transition in interfibrillar cardiac mitochondria in dogs: effects of aging and long-term aldosterone infusion

Girma Asemu; Kelly A. O'Connell; James W. Cox; Erinne R. Dabkowski; Wenhong Xu; Rogerio F. Ribeiro; Kadambari C. Shekar; Peter A. Hecker; Sharad Rastogi; Hani N. Sabbah; Charles L. Hoppel; William C. Stanley

Functional differences between subsarcolemmal and interfibrillar cardiac mitochondria (SSM and IFM) have been observed with aging and pathological conditions in rodents. Results are contradictory, and there is little information from large animal models. We assessed the respiratory function and resistance to mitochondrial permeability transition (MPT) in SSM and IFM from healthy young (1 yr) and old (8 yr) female beagles and in old beagles with hypertension and left ventricular (LV) wall thickening induced by 16 wk of aldosterone infusion. MPT was assessed in SSM and IFM by Ca(2+) retention and swelling. Healthy young and old beagles had similar mitochondrial structure, respiratory function, and Ca(2+)-induced MPT within SSM and IFM subpopulations. On the other hand, oxidative capacity and resistance to Ca(2+)-induced MPT were significantly greater in IFM compared with SSM in all groups. Old beagles treated with aldosterone had greater LV wall thickness and worse diastolic filling but normal LV chamber volume and systolic function. Treatment with aldosterone did not alter mitochondrial respiratory function but accelerated Ca(2+)-induced MPT in SSM, but not IFM, compared with healthy old and young beagles. In conclusion, in a large animal model, oxidative capacity and resistance to MPT were greater in IFM than in SSM. Furthermore, aldosterone infusion increased susceptibility to MPT in SSM, but not IFM. Together this suggests that SSM are less resilient to acute stress than IFM in the healthy heart and are more susceptible to the development of pathology with chronic stress.

Collaboration


Dive into the Peter A. Hecker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge