Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter A. Münzel is active.

Publication


Featured researches published by Peter A. Münzel.


Biochemical Pharmacology | 1993

Paracetamol glucuronidation by recombinant rat and human phenol UDP-glucuronosyltransferases

Karl Walter Bock; Adelheid Forster; Harald Gschaidmeier; Marianne Brück; Peter A. Münzel; Wolfgang Schareck; Sylvie Fournel-Gigleux; Brian Burchell

Stably expressed human and rat phenol UDP-glucuronosyltransferases (UGTs) of the UGT1 complex (HlugP1, HlugP4 and 3-methylcholanthrene-inducible rat UGT1A1, the latter considered to be an orthologous enzyme to HlugP1) have been used to investigate the role of UGTs in paracetamol glucuronidation. Kinetic analysis of recombinant UGTs was compared to that of total UGT activities in liver microsomes. Paracetamol was found to be an overlapping substrate of several UGTs. It shows higher affinity for HlugP1 and rat UGT1A1 (apparent Km values of 2 and 3 mM, respectively) than for HlugP4 (Km = 50 mM) and other UGTs present in liver microsomes (Km values of > 12 mM). Glucuronidation of paracetamol with HlugP1 contrasts with that of 6-hydroxychrysene and of 4-methylumbelliferone, which are conjugated with higher affinity by HlugP4 than by HlugP1. Due to the wide tissue distribution of rat UGT1A1, paracetamol glucuronidation was also investigated in extrahepatic rat and human tissues. Paracetamol UGT activity was present and inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat kidney, lung and spleen. It was also detected in human kidney. A selective cDNA probe for exon 1 of HlugP1 cross-reacted with mRNA from both human liver and kidney. The results demonstrate that paracetamol is conjugated by HlugP1 and its rat orthologue UGT1A1 with higher affinity than by HlugP4 and other UGTs.


Biochemical Pharmacology | 2003

Frequent co-occurrence of the TATA box mutation associated with Gilbert's syndrome (UGT1A1*28) with other polymorphisms of the UDP-glucuronosyltransferase-1 locus (UGT1A6*2 and UGT1A7*3) in Caucasians and Egyptians.

Christoph Köhle; Bernd Möhrle; Peter A. Münzel; Matthias Schwab; Dorothee Wernet; Osama A. Badary; Karl Walter Bock

Polymorphisms of drug metabolizing enzymes are frequently associated with diseases and side effects of drugs. Recently, a TATA box mutation of UGT1A1 (UGT1A1*28), a common genotype leading to Gilberts syndrome, and several missense mutations of other UDP-glucuronosyltransferase 1 (UGT1) family members have been described. Furthermore, co-occurrence of UGT1A1*28 and UGT1A6*2 has been observed. In order to elucidate the basis for co-occurrence of UGT1 mutations, fluorescence resonance energy transfer techniques were developed for rapid determination of polymorphisms of three UGT isoforms (UGT1A1*28, 1A6*2, and 1A7*2/*3). Hundred healthy Caucasians and 50 Egyptians were genotyped. All genotypes followed the Hardy-Weinberg equilibrium. Only three major haplotypes were found, including a haplotype consisting of allelic variants of all three isoforms (29% in Caucasians and 22% in Egyptians), all leading to reduced UGT activity. Frequent haplotypes containing several UGT1 allelic variants should be taken into account in studies on the association between diseases, abnormal drug reactions, and UGT1 family polymorphisms.


Drug Metabolism Reviews | 1999

FUNCTIONS AND TRANSCRIPTIONAL REGULATION OF PAH-INDUCIBLE HUMAN UDP-GLUCURONOSYL-TRANSFERASES

Karl Walter Bock; Harald Gschaidmeier; Horst Heel; Tobias Lehmköster; Peter A. Münzel; Barbara S Bock-Hennig

Functions and regulation of selected human UDP-glucuronosyltransferases (UGT1A1, UGT1A4, UGT1A6, UGT1A9, UGT2B7, UGT2B15) are summarized. Evidence for at least two PAH-inducible UGTs (UGT1A6 and UGT1A9) is presented, which, however, are also constitutively expressed in a tissue- and cell-specific manner. These isoforms have recently been characterized to conjugate planar and bulky phenols, respectively. Using a selective RT-PCR method, UGT1A6 expression was detected in a variety of tissues (liver, kidney, lung, intestine, and pharyngeal mucosa). PAH-inducible UGTs may cooperate in the metabolism of phenolic metabolites of benzo(a)pyrene. Studies with stably expressed isoforms suggest that UGT1A9 is responsible for the formation of benzo(a)pyrene-3.6-diphenol diglucuronide, the major biliary metabolite of benzo(a)pyrene.


Toxicology and Applied Pharmacology | 2008

Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene

Thomas J. Erichsen; U. Ehmer; Sandra Kalthoff; Tim O. Lankisch; Tordis M. Müller; Peter A. Münzel; Michael P. Manns; Christian P. Strassburg

UDP glucuronosyltransferases (UGTs) play an important role for drug detoxification and toxicity. UGT function is genetically modulated by single nucleotide polymorphisms (SNPs) which lead to the expression of functionally altered protein, or altered expression levels. UGT1A4 activity includes anticonvulsants, antidepressants and environmental mutagens. In this study the induction of the human UGT1A4 gene and a potential influence of genetic variation in its promoter region were analyzed. SNPs at bp -219 and -163 occurred in 9% among 109 blood donors reducing UGT1A4 transcription by 40%. UGT1A4 transcription was dioxin inducible. Reporter gene experiments identified 2 xenobiotic response elements (XRE), which were functionally confirmed by mutagenesis analyses, and binding was demonstrated by electromobility shift assays. Constitutive human UGT1A4 gene expression and induction was aryl hydrocarbon receptor (AhR)-dependent, and reduced in the presence of SNPs at bp -219 and -163. AhR-mediated regulation of the human UGT1A4 gene by two XRE and a modulation by naturally occurring genetic variability by SNPs is demonstrated, which indicates gene-environment interaction with potential relevance for drug metabolism.


Biochemical Pharmacology | 1994

Tissue-specific constitutive and inducible expression of rat phenol UDP-glucuronosyltransferase

Peter A. Münzel; Marianne Brück; Karl Walter Bock

To investigate constitutive and inducible expression of rat phenol UDP-glucuronosyltransferase (UGT1A1) in liver and extrahepatic tissues, a selective cDNA probe for its unique exon 1 was utilized. 6-Hydroxychrysene was used as a functional probe of UGT1A1 activity. Constitutive expression of UGT1A1 was low in liver, but high in kidney, testis, epididymis and ovary. After treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 micrograms/kg for 7 days) the UGT1A1 mRNA level was markedly increased in liver (ca. 10-fold), and only moderately enhanced (up to 2-fold) in extrahepatic tissues where constitutive enzyme expression was high. UGT activity toward 6-hydroxychrysene was strongly inducible in liver (ca. 9-fold) and only moderately inducible in extrahepatic tissues (up to 2-fold). The results suggest complex tissue-specific regulation of UGT1A1 including positive and negative transcriptional factors and marked inducibility by TCDD in liver.


Advances in Enzyme Regulation | 1998

Ah receptor-controlled transcriptional regulation and function of rat and human UDP-glucuronosyltransferase isoforms

Karl Walter Bock; Harald Gschaidmeier; Horst Heel; Tobias Lehmköster; Peter A. Münzel; Frank T. Raschko; Barbara S Bock-Hennig

Transcriptional regulation and function of rat and human PAH-inducible UDP-glucuronosyltransferase (UGT) isoforms have been studied. 1. At least two PAH-inducible UGT isoforms are expressed in a variety of tissues, the rat isoforms UGT1A6 and UGT1A7, and the human isoforms UGT1A6 and UGT1A9. 2. For the rat and human UGT1A6 isoforms two modes of tissue- and cell-specific regulation were found, PAH-inducible and constitutive expression. 3. Transient transfection studies, using human UGT1A6/CAT fusion constructs and colon carcinoma Caco-2 cells, revealed that PAH induction of human UGT1A6 is mediated by the Ah receptor. 4. Cell-expressed UGT isoforms were used to study their function in PAH metabolism. Rat UGT1A7 and human UGT1A9 appear to be more efficient than the corresponding UGT1A6 isoforms in catalyzing glucuronide formation of PAH phenols and diphenols. Several isoforms may act together in the formation of benzo(a)pyrene-3.6-diol diglucuronide, the major glucuronide found in rat bile. The results suggest complex modes of transcriptional regulation of PAH-inducible UGTs. They also suggest a major role of these UGT isoforms in detoxication of PAHs.


Archives of Toxicology | 2008

Aryl hydrocarbon receptor-mediated regulation of the human estrogen and bile acid UDP-glucuronosyltransferase 1A3 gene

Tim O. Lankisch; Tracey C. Gillman; Thomas J. Erichsen; U. Ehmer; Sandra Kalthoff; Nicole Freiberg; Peter A. Münzel; Michael P. Manns; Christian P. Strassburg

UDP-glucuronosyltransferases contribute to the detoxification of drugs by forming water soluble β-d-glucopyranosiduronic acids. The human UGT1A3 protein catalyzes the glucuronidation of estrogens, bile acids and xenobiotics including non-steroidal anti-inflammatory drugs and lipid lowering drugs. Regulation of UGT1A3 by xenobiotic response elements is likely, but the responsible elements are yet uncharacterized. In addition, genetic promoter variants may affect UGT1A3 regulation and potential induction by xenobiotics. The UGT1A3 promoter was analyzed by mutagenesis, reporter gene, and mobility shift analyses. Three hundred and eighty-nine blood donors were genotyped for promoter single nucleotide polymorphisms (SNPs) showing an allelic frequency of 42% of variants at −66 (T to C) and −204 (A to G). A xenobiotic response element regulating aryl hydrocarbon receptor (AhR)-mediated UGT1A3 transcription was identified and characterized. UGT1A3 transcription was reduced in the presence of promoter SNPs. These data demonstrate xenobiotic induced regulation of the UGT1A3 gene by the AhR, which shows genetic variability.


Archives of Toxicology | 2013

Non-melanoma skin cancer in mouse and man.

Michael Schwarz; Peter A. Münzel; Albert Braeuning

As a frontier organ, skin is exposed to different environmental and/or occupational chemicals which cause cutaneous cancers in experimental animals. In mice, 7,12-dimethylbenz[a]anthrancene (DMBA) and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) are frequently used as skin model tumor initiator and promoter, respectively. The sequential administration of DMBA and TPA leads to the appearance of a large number of benign papillomas, of which some convert later into invasive squamous cell carcinomas (SCC). At the molecular level, initiation of carcinogenesis in mouse skin consists in the mutational activation of the Ha-ras oncoprotein. HA-RAS mutations are rare in human SCC, but HA-RAS-mutated tumors appear in melanoma patients treated with B-raf inhibitors, indicating that initiated, HA-RAS-mutated stem cells also reside in human skin. Similarly, UV-induced human SCC show footprint mutations in the tumor suppressor gene TP53 which are also observed in UV-induced mouse SCC. Strong species differences exist with respect to phorbol ester-mediated tumor promotion. While certain mouse strains are very susceptible, other rodent species are much less sensitive. Likewise, humans appear to be much more resistant to phorbol ester-mediated skin toxicity. Papilloma formation as a result of a chemical insult is uncommon in men, questioning the relevance of this preneoplastic lesion for humans. However, skin tumorigenesis in the experimental situation and in humans appears to follow common molecular mechanisms, even though there are species differences in the morphological correlates to the preneoplastic state. Therefore, we recommend not simply labeling them as irrelevant for human risk assessment.


Biochemical Pharmacology | 2000

In situ hybridization studies of UDP-glucuronosyltransferase UGT1A6 expression in rat testis and brain.

Alexander Brands; Peter A. Münzel; Karl Walter Bock

UDP-glucuronosyltransferases (UGTs), in addition to their role in overall pharmacokinetics, play important roles in local protection of cells against toxins and in the control of endogenous receptor ligands. UGT1A6, which conjugates planar phenols, appears to be expressed in many organs, but information on cell-specific expression in these organs is controversial or absent. Therefore, a non-isotopic in situ hybridization method was developed and applied to localize UGT1A6 expression in rat testis and brain. It was found that UGT1A6 is expressed in Sertoli cells and spermatogonia of rat testis and in brain neurons, in particular in hippocampal pyramidal cells and Purkinje cells of the cerebellum.


Drug Metabolism and Disposition | 2006

REGULATION OF CYP1A1 GENE EXPRESSION BY THE ANTIOXIDANT TERT-BUTYLHYDROQUINONE

Thomas D. Schreiber; Christoph Köhle; Felicitas Buckler; Stefan Schmohl; Albert Braeuning; Alexander Schmiechen; Michael Schwarz; Peter A. Münzel

CYP1A1, a major phase I enzyme, plays an important role in the metabolism of polycyclic aromatic hydrocarbons and in the chemical activation of xenobiotics to carcinogenic derivatives. The phenolic antioxidant tert-butylhydroquinone (tBHQ), often used as a food preservative, is generally considered to act only as a mono-functional inducer of phase II enzymes, thereby exerting chemo-protection. However, we recently observed that tBHQ elevated the activity of an aryl hydrocarbon receptor (AhR) response element (DRE)-driven luciferase reporter in human colon carcinoma cells (Caco-2). Therefore, we studied the effects of tBHQ on the activity of a DRE-driven reporter, CYP1A1 mRNA expression, and CYP1A enzyme activity in Caco-2 cells and human HepG2 hepatoma cells. We found tBHQ caused induction of reporter activity and CYP1A1 expression and activity in Caco-2 and HepG2 cells. Moreover, tBHQ combined with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased reporter activity and mRNA expression in Caco-2 cells in an additive manner. By contrast, tBHQ decreased TCDD-mediated induction of reporter activity and CYP1A1 mRNA expression in HepG2 cells. Resveratrol, an AhR antagonist, repressed the induction of CYP1A1 by tBHQ. Cotransfection of HepG2 cells with a dominant negative AhR nuclear translocator mutant abolished the tBHQ-induced CYP1A1 reporter activity. These findings indicate that CYP1A1 may be induced by the antioxidant tBHQ via an AhR-dependent mechanism.

Collaboration


Dive into the Peter A. Münzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Schrenk

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Horst Heel

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge