Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter A. Rubenstein is active.

Publication


Featured researches published by Peter A. Rubenstein.


PLOS Biology | 2004

Early myocardial function affects endocardial cushion development in zebrafish.

Thomas Bartman; Emily Walsh; Kuo-Kuang Wen; Melissa McKane; Jihui Ren; Jonathan Alexander; Peter A. Rubenstein; Didier Y. R. Stainier

Function of the heart begins long before its formation is complete. Analyses in mouse and zebrafish have shown that myocardial function is not required for early steps of organogenesis, such as formation of the heart tube or chamber specification. However, whether myocardial function is required for later steps of cardiac development, such as endocardial cushion (EC) formation, has not been established. Recent technical advances and approaches have provided novel inroads toward the study of organogenesis, allowing us to examine the effects of both genetic and pharmacological perturbations of myocardial function on EC formation in zebrafish. To address whether myocardial function is required for EC formation, we examined silent heart (sih−/−) embryos, which lack a heartbeat due to mutation of cardiac troponin T (tnnt2), and observed that atrioventricular (AV) ECs do not form. Likewise, we determined that cushion formation is blocked in cardiofunk (cfk−/−) embryos, which exhibit cardiac dilation and no early blood flow. In order to further analyze the heart defects in cfk−/− embryos, we positionally cloned cfk and show that it encodes a novel sarcomeric actin expressed in the embryonic myocardium. The Cfks11 variant exhibits a change in a universally conserved residue (R177H). We show that in yeast this mutation negatively affects actin polymerization. Because the lack of cushion formation in sih- and cfk-mutant embryos could be due to reduced myocardial function and/or lack of blood flow, we approached this question pharmacologically and provide evidence that reduction in myocardial function is primarily responsible for the defect in cushion development. Our data demonstrate that early myocardial function is required for later steps of organogenesis and suggest that myocardial function, not endothelial shear stress, is the major epigenetic factor controlling late heart development. Based on these observations, we postulate that defects in cardiac morphogenesis may be secondary to mutations affecting early myocardial function, and that, in humans, mutations affecting embryonic myocardial function may be responsible for structural congenital heart disease.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The structure of nonvertebrate actin: Implications for the ATP hydrolytic mechanism

Sergey M. Vorobiev; B Strokopytov; David G. Drubin; Carl Frieden; Shoichiro Ono; J Condeelis; Peter A. Rubenstein; Steven C. Almo

Departments of *Biochemistry and ¶Anatomy and Structural Biology, and **Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461; †Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202; ‡Departments of Biochemistry and Molecular Biophysics and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110; §Department of Pathology, Emory University, Atlanta, GA 30322; and Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242


Journal of Biological Chemistry | 2010

Ion-dependent polymerization differences between mammalian β- and γ-nonmuscle actin isoforms

Sarah E. Bergeron; Mei Zhu; Suzanne M. Thiem; Karen H. Friderici; Peter A. Rubenstein

β- and γ-nonmuscle actins differ by 4 amino acids at or near the N terminus and distant from polymerization interfaces. β-Actin contains an Asp1-Asp2-Asp3 and Val10 whereas γ-actin has a Glu1-Glu2-Glu3 and Ile10. Despite these small changes, conserved across mammals, fish, and birds, their differential localization in the same cell suggests they may play different roles reflecting differences in their biochemical properties. To test this hypothesis, we established a baculovirus-driven expression system for producing these actins in isoform-pure populations although contaminated with 20–25% insect actin. Surprisingly, Ca-γ-actin exhibits a slower monomeric nucleotide exchange rate, a much longer nucleation phase, and a somewhat slower elongation rate than β-actin. In the Mg-form, this difference between the two is much smaller. Ca-γ-actin depolymerizes half as fast as does β-actin. Mixing experiments with Ca-actins reveal the two will readily co-polymerize. In the Ca-form, phosphate release from polymerizing β-actin occurs much more rapidly and extensively than polymerization, whereas phosphate release lags behind polymerization with γ-actin. Phosphate release during treadmilling is twice as fast with β- as with γ-actin. With Mg-actin in the initial stages, phosphate release for both actins correlates much more closely with polymerization. Calcium bound in the high affinity binding site of γ-actin may cause a selective energy barrier relative to β-actin that retards the equilibration between G- and F-monomer conformations resulting in a slower polymerizing actin with greater filament stability. This difference may be particularly important in sites such as the γ-actin-rich cochlear hair cell stereocilium where local mm calcium concentrations may exist.


Journal of Biological Chemistry | 1997

Fluorescence Probing of Yeast Actin Subdomain 3/4 Hydrophobic Loop 262–274 ACTIN-ACTIN AND ACTIN-MYOSIN INTERACTIONS IN ACTIN FILAMENTS

Li Feng; Eldar Kim; Wei-Lih Lee; Carl Miller; Bing Kuang; Emil Reisler; Peter A. Rubenstein

Residues 262–274 form a loop between subdomains 3 and 4 of actin. This loop may play an important role in actin filament formation and stabilization. To assess directly the behavior of this loop, we mutated Ser265 of yeast actin to cysteine (S265C) and created another mutant (S265C/C374A) by changing Cys374 of S265C actin to alanine. These changes allowed us to attach a pyrene maleimide stoichiometrically to either Cys374 or Cys265. These mutations had no detectable effects on the protease susceptibility, intrinsic ATPase activity, and thermal stability of labeled or unlabeled G-actin. The presence of the loop cysteine, either labeled or unlabeled, did not affect the actin-activated S1 ATPase activity or the in vitro motility of the actin. Both mutant actins, either labeled or unlabeled, nucleated filament formation considerably faster than wild-type (WT) actin, although the critical concentration was not affected. Whereas the fluorescence of the C-terminal (WT) probe increased during polymerization, that of the loop (S265C/C374A) probe decreased, and the fluorescence of the doubly labeled actin (S265C) was ∼50% less than the sum of the fluorescence of the individual fluorophores. Quenching was also observed in copolymers of labeled WT and S265C/C374A actins. An excimer peak was present in the emission spectrum of labeled S265C F-actin and in the labeled S265C/C374A-WT actin copolymers. These results show that in the filaments, the C-terminal pyrene of a substantial fraction of monomers directly interacts with the loop pyrene of neighboring monomers, bringing the two cysteine sulfurs to within 18 Å of one another. Finally, when bound to labeled S265C/C374A F-actin, myosin S1, but not tropomyosin, caused an increase in fluorescence of the loop probe. Both proteins had no effect on excimer fluorescence. These results help establish the orientation of monomers in F-actin and show that the binding of S1 to actin subdomains 1 and 2 affects the environment of the loop between subdomains 3 and 4.


Journal of Biological Chemistry | 2009

Vinculin Nucleates Actin Polymerization and Modifies Actin Filament Structure

Kuo-Kuang Wen; Peter A. Rubenstein; Kris A. DeMali

Vinculin links integrins to the actin cytoskeleton by binding F-actin. Little is known with respect to how this interaction occurs or affects actin dynamics. Here we assess the consequence of the vinculin tail (VT) on actin dynamics by examining its binding to monomeric and filamentous yeast actins. VT causes pyrene-labeled G-actin to polymerize in low ionic strength buffer (G-buffer), conditions that normally do not promote actin polymerization. Analysis by electron microscopy shows that, under these conditions, the filaments form small bundles at low VT concentrations, which gradually increase in size until saturation occurs at a ratio of 2 VT:1 actin. Addition of VT to pyrene-labeled mutant yeast G-actin (S265C) produced a fluorescence excimer band, which requires a relatively normal filament geometry. In higher ionic strength polymerization-promoting F-buffer, substoichiometric amounts of VT accelerate the polymerization of pyrene-labeled WT actin. However, the amplitude of the pyrene fluorescence caused by actin polymerization is quenched as the VT concentration increases without an effect on net actin polymerization as determined by centrifugation assays. Finally, addition of VT to preformed pyrene-labeled S265C F-actin causes a concentration-dependent decrease in the maximum amplitude of the pyrene fluorescence band demonstrating the ability of VT to remodel the conformation of the actin filament. These observations support the idea that vinculin can link adhesion plaques to the cytoskeleton by initiating the formation of bundled actin filaments or by remodeling existing filaments.


Biochemistry | 1996

Mutational Analysis of the Role of the N Terminus of Actin in Actomyosin Interactions. Comparison with Other Mutant Actins and Implications for the Cross-Bridge Cycle†

Carl Miller; Wenise W. Wong; Elena Bobkova; Peter A. Rubenstein; Emil Reisler

Yeast actin mutants with acidic residues at the N terminus either neutralized (DNEQ) or deleted (delta-DSE) were used to assess the role of N-terminal acidic residues in the interactions of actin with myosin in the contractile cycle. Cosedimentation experiments revealed an approximately 3-fold decrease in the binding constant for DNEQ and delta-DSE actins to myosin subfragment-1 (S1) relative to that of wild type actin both in the presence of MgATP and in the absence of nucleotides (strong binding). DNEQ and delta-DSE actins protected S1 from tryptic digestion as well as the wild type and rabbit actins. The activation of S1 ATPase by DNEQ and delta-DSE actins (up to 50 microM) was very low but increased greatly after cross-linking these mutant actins to S1 by dimethyl suberimidate. Thus, the increased dissociation of mutant actins from S1 in the presence of ATP is the main cause for the low acto-S1 ATPase activities. At low-ionic strength conditions and in the presence of methylcellulose, the DNEQ and delta-DSE actins moved in the in vitro motility assays at a mean velocity similar to that of wild type actin (3.0 microns/s). Yet, the sliding velocity of the N-terminal and D24A/D25A and E99A/E100A mutant actins decreased relative to that of the wild type at all levels of external load introduced into the assay and at low densities of heavy meromyosin (HMM) on the cover slip. This indicates a lower relative force generation with the mutant actins. In contrast, the force generated under the same conditions with the 4Ac mutant actin (with four acidic charges at the N terminus) was higher than with wild type actin. At higher-ionic strength conditions (I = 150 mM), the sliding of the DNEQ and delta-DSE as well as that of the D24A/D25A and E99A/E100A actins ceased even in the presence of methylcellulose, while I341A actin (deficient in strong binding to myosin) still moved. These results indicate the importance of electrostatic actomyosin interactions under physiological salt conditions and show functionally distinct roles for the different myosin binding sites on actin.


Journal of Biological Chemistry | 1997

Beryllium Fluoride and Phalloidin Restore Polymerizability of a Mutant Yeast Actin (V266G,L267G) with Severely Decreased Hydrophobicity in a Subdomain 3/4 Loop

Bing Kuang; Peter A. Rubenstein

Holmes proposed that in F-actin, hydrophobic residues in a subdomain 3/4 loop interact with a hydrophobic pocket on the opposing strand resulting in helix stabilization. We have determined how a decreased hydrophobicity of this plug affects yeast actin function. Cells harboring only the V266G, V266D, V266F, L267G, L269D, or L269K actins appear normal, although V266G cells display an altered budding pattern. However, V266G,L267G (GG) double mutant cells are cold-sensitive with randomly oriented thick actin assemblies seen in rhodamine phalloidin-stained GG cells. V266D actin polymerizes slower than wild-type actin at room temperature. At 4°C, not only is polymerization slowed, but there is also an effect on critical concentration. However, the polymerization defects are milder than those associated with substitution of Asp for the neighboring Leu267. Purified GG-actin does not polymerize in vitro alone or in the presence of wild-type F-actin seeds. GG-actin polymerization can be restored by larger amounts of wild-type actin, beryllium fluoride, or phalloidin at room temperature, although at 4°C only phalloidin is effective. These results suggest that the diminished hydrophobicity of the plug in GG-actin leads to filament destabilization. However, the V266D actin results require a modification of the original Holmes filament model.


Human Molecular Genetics | 2009

In vivo and in vitro effects of two novel gamma actin (ACTG1) mutations that cause DFNA20/26 hearing impairment

Matías Morín; Keith E. Bryan; Fernando Mayo-Merino; Richard J. Goodyear; Ángeles Mencía; Silvia Modamio-Høybjør; Ignacio del Castillo; Jessica M. Cabalka; Guy P. Richardson; Felipe Moreno; Peter A. Rubenstein; Miguel A. Moreno-Pelayo

Here we report the functional assessment of two novel deafness-associated gamma-actin mutants, K118N and E241K, in a spectrum of different situations with increasing biological complexity by combining biochemical and cell biological analysis in yeast and mammalian cells. Our in vivo experiments showed that while the K118N had a very mild effect on yeast behaviour, the phenotype caused by the E241K mutation was very severe and characterized by a highly compromised ability to grow on glycerol as a carbon source, an aberrant multi-vacuolar pattern and the deposition of thick F-actin bundles randomly in the cell. The latter feature is consistent with the highly unusual spontaneous tendency of the E241K mutant to form bundles in vitro, although this propensity to bundle was neutralized by tropomyosin and the E241K filament bundles were hypersensitive to severing in the presence of cofilin. In transiently transfected NIH3T3 cells both mutant actins were normally incorporated into cytoskeleton structures, although cytoplasmic aggregates were also observed indicating an element of abnormality caused by the mutations in vivo. Interestingly, gene-gun mediated expression of these mutants in cochlear hair cells results in no gross alteration in cytoskeletal structures or the morphology of stereocilia. Our results provide a more complete picture of the biological consequences of deafness-associated gamma-actin mutants and support the hypothesis that the post-lingual and progressive nature of the DFNA20/26 hearing loss is the result of a progressive deterioration of the hair cell cytoskeleton over time.


Journal of Biological Chemistry | 2005

Acceleration of Yeast Actin Polymerization by Yeast Arp2/3 Complex Does Not Require an Arp2/3-activating Protein

Kuo-Kuang Wen; Peter A. Rubenstein

The Arp2/3 complex creates filament branches leading to an enhancement in the rate of actin polymerization. Work with Arp complexes from different sources indicated that it was inactive by itself, required an activating factor such as the Wiskott-Aldrich syndrome protein (WASP), and might exhibit a preference for ATP or ADP-Pi actin. However, with yeast actin, Pi release is almost concurrent with polymerization, eliminating the presence of an ADP-Pi cap. We thus investigated the ability of the yeast Arp2/3 complex (yArp2/3) to facilitate yeast actin polymerization in the presence and absence of the Arp2/3-activating factor Las17p WA. yArp2/3 significantly accelerates yeast actin but not muscle actin polymerization in the absence of Las17p WA. The addition of Las17p WA further enhances yeast actin polymerization by yArp2/3 and allows the complex to now assist muscle actin polymerization. This actin isoform difference is not observed with bovine Arp2/3 complex, because the neural WASP VCA fragment is required for polymerization of both actins. Observation of individual branching filaments showed that Las17p WA increased the persistence of filament branches. Compared with wild type actin, the V159N mutant actin, proposed to be more ATP-like in behavior, exhibited an enhanced rate of polymerization in the presence of the yArp2/3 complex. yArp2/3 caused a significant rate of Pi release prior to observation of an increase in filament mass but while branched structures were present. Thus, yeast F-actin can serve as a primary yArp2/3-activating factor, indicating that a newly formed yeast actin filament has a topology, unlike that of muscle actin, that is recognized specifically by yArp2/3.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds

Cho-yin Lee; Jizhong Lou; Kuo-Kuang Wen; Melissa McKane; Suzanne G. Eskin; Shoichiro Ono; Shu Chien; Peter A. Rubenstein; Cheng Zhu; Larry V. McIntire

As a key element in the cytoskeleton, actin filaments are highly dynamic structures that constantly sustain forces. However, the fundamental question of how force regulates actin dynamics is unclear. Using atomic force microscopy force-clamp experiments, we show that tensile force regulates G-actin/G-actin and G-actin/F-actin dissociation kinetics by prolonging bond lifetimes (catch bonds) at a low force range and by shortening bond lifetimes (slip bonds) beyond a threshold. Steered molecular dynamics simulations reveal force-induced formation of new interactions that include a lysine 113(K113):glutamic acid 195 (E195) salt bridge between actin subunits, thus suggesting a molecular basis for actin catch-slip bonds. This structural mechanism is supported by the suppression of the catch bonds by the single-residue replacements K113 to serine (K113S) and E195 to serine (E195S) on yeast actin. These results demonstrate and provide a structural explanation for actin catch-slip bonds, which may provide a mechanoregulatory mechanism to control cell functions by regulating the depolymerization kinetics of force-bearing actin filaments throughout the cytoskeleton.

Collaboration


Dive into the Peter A. Rubenstein's collaboration.

Top Co-Authors

Avatar

Kuo-Kuang Wen

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Emil Reisler

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge