Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter A. Underhill is active.

Publication


Featured researches published by Peter A. Underhill.


Nature Genetics | 2000

Y chromosome sequence variation and the history of human populations

Peter A. Underhill; Peidong Shen; Alice A. Lin; Li Jin; Giuseppe Passarino; Wei H. Yang; Erin Kauffman; Batsheva Bonne-Tamir; Jaume Bertranpetit; Paolo Francalacci; Muntaser Ibrahim; Trefor Jenkins; S. Qasim Mehdi; Mark Seielstad; R. Spencer Wells; Alberto Piazza; Ronald W. Davis; Marcus W. Feldman; Luigi Luca Cavalli-Sforza; J. Oefner

Binary polymorphisms associated with the non-recombining region of the human Y chromosome (NRY) preserve the paternal genetic legacy of our species that has persisted to the present, permitting inference of human evolution, population affinity and demographic history. We used denaturing high-performance liquid chromatography (DHPLC; ref. 2) to identify 160 of the 166 bi-allelic and 1 tri-allelic site that formed a parsimonious genealogy of 116 haplotypes, several of which display distinct population affinities based on the analysis of 1062 globally representative individuals. A minority of contemporary East Africans and Khoisan represent the descendants of the most ancestral patrilineages of anatomically modern humans that left Africa between 35,000 and 89,000 years ago.


Genome Research | 2008

New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree.

Tatiana M. Karafet; Fernando L. Mendez; Monica B. Meilerman; Peter A. Underhill; Stephen L. Zegura; Michael F. Hammer

Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree.


Annals of Human Genetics | 2001

The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations

Peter A. Underhill; Giuseppe Passarino; Alice A. Lin; Peidong Shen; Marta Mirazón Lahr; Robert Foley; Peter J. Oefner; Luigi Luca Cavalli-Sforza

Although molecular genetic evidence continues to accumulate that is consistent with a recent common African ancestry of modern humans, its ability to illuminate regional histories remains incomplete. A set of unique event polymorphisms associated with the non‐recombining portion of the Y‐chromosome (NRY) addresses this issue by providing evidence concerning successful migrations originating from Africa, which can be interpreted as subsequent colonizations, differentiations and migrations overlaid upon previous population ranges. A total of 205 markers identified by denaturing high performance liquid chromatography (DHPLC), together with 13 taken from the literature, were used to construct a parsimonious genealogy. Ancestral allelic states were deduced from orthologous great ape sequences. A total of 131 unique haplotypes were defined which trace the microevolutionary trajectory of global modern human genetic diversification. The genealogy provides a detailed phylogeographic portrait of contemporary global population structure that is emblematic of human origins, divergence and population history that is consistent with climatic, paleoanthropological and other genetic knowledge.


Genetics | 2005

The Role of Selection in the Evolution of Human Mitochondrial Genomes

Toomas Kivisild; Peidong Shen; Dennis P. Wall; Bao H. Do; Raphael Sung; Karen Davis; Giuseppe Passarino; Peter A. Underhill; Curt Scharfe; Antonio Torroni; Rosaria Scozzari; David Modiano; Alfredo Coppa; Peter de Knijff; Marcus W. Feldman; Luca Cavalli-Sforza; Peter J. Oefner

High mutation rate in mammalian mitochondrial DNA generates a highly divergent pool of alleles even within species that have dispersed and expanded in size recently. Phylogenetic analysis of 277 human mitochondrial genomes revealed a significant (P < 0.01) excess of rRNA and nonsynonymous base substitutions among hotspots of recurrent mutation. Most hotspots involved transitions from guanine to adenine that, with thymine-to-cytosine transitions, illustrate the asymmetric bias in codon usage at synonymous sites on the heavy-strand DNA. The mitochondrion-encoded tRNAThr varied significantly more than any other tRNA gene. Threonine and valine codons were involved in 259 of the 414 amino acid replacements observed. The ratio of nonsynonymous changes from and to threonine and valine differed significantly (P = 0.003) between populations with neutral (22/58) and populations with significantly negative Tajimas D values (70/76), independent of their geographic location. In contrast to a recent suggestion that the excess of nonsilent mutations is characteristic of Arctic populations, implying their role in cold adaptation, we demonstrate that the surplus of nonsynonymous mutations is a general feature of the young branches of the phylogenetic tree, affecting also those that are found only in Africa. We introduce a new calibration method of the mutation rate of synonymous transitions to estimate the coalescent times of mtDNA haplogroups.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The Eurasian Heartland: A continental perspective on Y-chromosome diversity

R S Wells; Nadira Yuldasheva; Ruslan Ruzibakiev; Peter A. Underhill; I Evseeva; Jason Blue-Smith; Li Jin; Bing Su; Rm. Pitchappan; Sadagopal Shanmugalakshmi; Karuppiah Balakrishnan; M H Read; Nathaniel M. Pearson; Tatiana Zerjal; Matthew T. Webster; I Zholoshvili; E Jamarjashvili; Spartak Gambarov; Behrooz Nikbin; A Dostiev; O A Aknazarov; Pierre Zalloua; Igor Tsoy; M I Kitaev; Mirsaid M. Mirrakhimov; A Chariev; Walter F. Bodmer

The nonrecombining portion of the human Y chromosome has proven to be a valuable tool for the study of population history. The maintenance of extended haplotypes characteristic of particular geographic regions, despite extensive admixture, allows complex demographic events to be deconstructed. In this study we report the frequencies of 23 Y-chromosome biallelic polymorphism haplotypes in 1,935 men from 49 Eurasian populations, with a particular focus on Central Asia. These haplotypes reveal traces of historical migrations, and provide an insight into the earliest patterns of settlement of anatomically modern humans on the Eurasian continent. Central Asia is revealed to be an important reservoir of genetic diversity, and the source of at least three major waves of migration leading into Europe, the Americas, and India. The genetic results are interpreted in the context of Eurasian linguistic patterns.


American Journal of Human Genetics | 1999

Y-Chromosome Evidence for a Northward Migration of Modern Humans into Eastern Asia during the Last Ice Age

Bing Su; Junhua Xiao; Peter A. Underhill; Ranjan Deka; Weiling Zhang; Joshua M. Akey; Wei Huang; Di Shen; Daru Lu; Jingchun Luo; Jiayou Chu; Jiazhen Tan; Peidong Shen; Ronald W. Davis; Luca Cavalli-Sforza; Ranajit Chakraborty; Momiao Xiong; Ruofu Du; Peter J. Oefner; Zhu Chen; Li Jin

The timing and nature of the arrival and the subsequent expansion of modern humans into eastern Asia remains controversial. Using Y-chromosome biallelic markers, we investigated the ancient human-migration patterns in eastern Asia. Our data indicate that southern populations in eastern Asia are much more polymorphic than northern populations, which have only a subset of the southern haplotypes. This pattern indicates that the first settlement of modern humans in eastern Asia occurred in mainland Southeast Asia during the last Ice Age, coinciding with the absence of human fossils in eastern Asia, 50,000-100,000 years ago. After the initial peopling, a great northward migration extended into northern China and Siberia.


American Journal of Human Genetics | 2004

The effective mutation rate at Y chromosome short tandem repeats, with application to human population-divergence time

Peter A. Underhill; Cengiz Cinnioglu; Manfred Kayser; Bharti Morar; Toomas Kivisild; Rosaria Scozzari; Fulvio Cruciani; Giovanni Destro-Bisol; Gabriella Spedini; Geoffrey K. Chambers; Rene J. Herrera; Kiau Kiun Yong; David Gresham; Ivailo Tournev; Marcus W. Feldman; Luba Kalaydjieva

We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9x10-4 per 25 years, with a standard deviation across loci of 5.7x10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria.


American Journal of Human Genetics | 2004

Origin, Diffusion, and Differentiation of Y-Chromosome Haplogroups E and J: Inferences on the Neolithization of Europe and Later Migratory Events in the Mediterranean Area

Ornella Semino; Chiara Magri; Giorgia Benuzzi; Alice A. Lin; Nadia Al-Zahery; Vincenza Battaglia; Liliana Maccioni; Costas Triantaphyllidis; Peidong Shen; Peter J. Oefner; Roy King; Antonio Torroni; Luigi Luca Cavalli-Sforza; Peter A. Underhill; A. Silvana Santachiara-Benerecetti

The phylogeography of Y-chromosome haplogroups E (Hg E) and J (Hg J) was investigated in >2400 subjects from 29 populations, mainly from Europe and the Mediterranean area but also from Africa and Asia. The observed 501 Hg E and 445 Hg J samples were subtyped using 36 binary markers and eight microsatellite loci. Spatial patterns reveal that (1). the two sister clades, J-M267 and J-M172, are distributed differentially within the Near East, North Africa, and Europe; (2). J-M267 was spread by two temporally distinct migratory episodes, the most recent one probably associated with the diffusion of Arab people; (3). E-M81 is typical of Berbers, and its presence in Iberia and Sicily is due to recent gene flow from North Africa; (4). J-M172(xM12) distribution is consistent with a Levantine/Anatolian dispersal route to southeastern Europe and may reflect the spread of Anatolian farmers; and (5). E-M78 (for which microsatellite data suggest an eastern African origin) and, to a lesser extent, J-M12(M102) lineages would trace the subsequent diffusion of people from the southern Balkans to the west. A 7%-22% contribution of Y chromosomes from Greece to southern Italy was estimated by admixture analysis.


Human Genetics | 2004

Excavating Y-chromosome haplotype strata in Anatolia

Cengiz Cinnioglu; Roy King; Toomas Kivisild; Ersi Abaci Kalfoglu; Sevil Atasoy; Gianpiero L. Cavalleri; Anita S. Lillie; Charles C. Roseman; Alice A. Lin; Kristina Prince; Peter J. Oefner; Peidong Shen; Ornella Semino; Luigi Luca Cavalli-Sforza; Peter A. Underhill

Analysis of 89 biallelic polymorphisms in 523 Turkish Y chromosomes revealed 52 distinct haplotypes with considerable haplogroup substructure, as exemplified by their respective levels of accumulated diversity at ten short tandem repeat (STR) loci. The major components (haplogroups E3b, G, J, I, L, N, K2, and R1; 94.1%) are shared with European and neighboring Near Eastern populations and contrast with only a minor share of haplogroups related to Central Asian (C, Q and O; 3.4%), Indian (H, R2; 1.5%) and African (A, E3*, E3a; 1%) affinity. The expansion times for 20 haplogroup assemblages was estimated from associated STR diversity. This comprehensive characterization of Y-chromosome heritage addresses many multifaceted aspects of Anatolian prehistory, including: (1) the most frequent haplogroup, J, splits into two sub-clades, one of which (J2) shows decreasing variances with increasing latitude, compatible with a northward expansion; (2) haplogroups G1 and L show affinities with south Caucasus populations in their geographic distribution as well as STR motifs; (3) frequency of haplogroup I, which originated in Europe, declines with increasing longitude, indicating gene flow arriving from Europe; (4) conversely, haplogroup G2 radiates towards Europe; (5) haplogroup E3b3 displays a latitudinal correlation with decreasing frequency northward; (6) haplogroup R1b3 emanates from Turkey towards Southeast Europe and Caucasia and; (7) high resolution SNP analysis provides evidence of a detectable yet weak signal (<9%) of recent paternal gene flow from Central Asia. The variety of Turkish haplotypes is witness to Turkey being both an important source and recipient of gene flow.


American Journal of Human Genetics | 2006

Polarity and temporality of high-resolution y-chromosome distributions in India identify both indigenous and exogenous expansions and reveal minor genetic influence of Central Asian pastoralists.

Sanghamitra Sengupta; Roy King; S.Q. Mehdi; Christopher A. Edmonds; Cheryl-Emiliane T Chow; Alice A. Lin; Mitashree Mitra; Samir Kumar Sil; A. Ramesh; M. V. Usha Rani; Chitra Thakur; Luigi Luca Cavalli-Sforza; Partha P. Majumder; Peter A. Underhill

Although considerable cultural impact on social hierarchy and language in South Asia is attributable to the arrival of nomadic Central Asian pastoralists, genetic data (mitochondrial and Y chromosomal) have yielded dramatically conflicting inferences on the genetic origins of tribes and castes of South Asia. We sought to resolve this conflict, using high-resolution data on 69 informative Y-chromosome binary markers and 10 microsatellite markers from a large set of geographically, socially, and linguistically representative ethnic groups of South Asia. We found that the influence of Central Asia on the pre-existing gene pool was minor. The ages of accumulated microsatellite variation in the majority of Indian haplogroups exceed 10,000-15,000 years, which attests to the antiquity of regional differentiation. Therefore, our data do not support models that invoke a pronounced recent genetic input from Central Asia to explain the observed genetic variation in South Asia. R1a1 and R2 haplogroups indicate demographic complexity that is inconsistent with a recent single history. Associated microsatellite analyses of the high-frequency R1a1 haplogroup chromosomes indicate independent recent histories of the Indus Valley and the peninsular Indian region. Our data are also more consistent with a peninsular origin of Dravidian speakers than a source with proximity to the Indus and with significant genetic input resulting from demic diffusion associated with agriculture. Our results underscore the importance of marker ascertainment for distinguishing phylogenetic terminal branches from basal nodes when attributing ancestral composition and temporality to either indigenous or exogenous sources. Our reappraisal indicates that pre-Holocene and Holocene-era--not Indo-European--expansions have shaped the distinctive South Asian Y-chromosome landscape.

Collaboration


Dive into the Peter A. Underhill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge