Peter A. Wells
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter A. Wells.
Science | 2010
Beili Wu; Ellen Y.T. Chien; Clifford D. Mol; Gustavo Fenalti; Wei Liu; Vsevolod Katritch; Ruben Abagyan; Alexei Brooun; Peter A. Wells; F. Christopher Bi; Damon J. Hamel; Peter Kuhn; Tracy M. Handel; Vadim Cherezov; Raymond C. Stevens
Regulating Migration The migration of cells around the body is an important factor in cancer development and the establishment of infection. Movement is induced by small proteins called chemokines, and so for a specific function, migration is controlled by a relevant chemokine binding to its respective receptor. This family of receptors is known as guanine (G) protein–coupled receptors, which span cell membranes to mediate between external signals from chemokines and internal mechanisms. The chemokine receptor CXCR4 is implicated in many types of cancer and in infection, and Wu et al. (p. 1066, published online 7 October; see the Report by Chien et al.) report on a series of crystal structures obtained for CXCR4 bound to small molecules. In every case, the same homodimer structure was observed, suggesting that the interface is functionally relevant. These structures offer insights into the interactions between CXCR4 and its natural chemokine, as well as with the virus HIV-1. Five crystal structures provide insight into chemokine and HIV-1 recognition. Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein–coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein–coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ketan S. Gajiwala; Joe C. Wu; James G. Christensen; Gayatri D. Deshmukh; Wade Diehl; Jonathan P. DiNitto; Jessie M. English; Michael J. Greig; You-Ai He; Suzanne L. Jacques; Elizabeth A. Lunney; Michele McTigue; David Molina; Terri Quenzer; Peter A. Wells; Xiu Yu; Yan Zhang; Aihua Zou; Mark R. Emmett; Alan G. Marshall; Hui-Min Zhang; George D. Demetri
Most gastrointestinal stromal tumors (GISTs) exhibit aberrant activation of the receptor tyrosine kinase (RTK) KIT. The efficacy of the inhibitors imatinib mesylate and sunitinib malate in GIST patients has been linked to their inhibition of these mutant KIT proteins. However, patients on imatinib can acquire secondary KIT mutations that render the protein insensitive to the inhibitor. Sunitinib has shown efficacy against certain imatinib-resistant mutants, although a subset that resides in the activation loop, including D816H/V, remains resistant. Biochemical and structural studies were undertaken to determine the molecular basis of sunitinib resistance. Our results show that sunitinib targets the autoinhibited conformation of WT KIT and that the D816H mutant undergoes a shift in conformational equilibrium toward the active state. These findings provide a structural and enzymologic explanation for the resistance profile observed with the KIT inhibitors. Prospectively, they have implications for understanding oncogenic kinase mutants and for circumventing drug resistance.
Journal of Biological Chemistry | 2006
Shenping Liu; John D. Knafels; Jeanne S. Chang; Gregory A. Waszak; Eric T. Baldwin; Martin R. Deibel; Darrell R. Thomsen; Fred L. Homa; Peter A. Wells; Monica C. Tory; Roger A. Poorman; Hua Gao; Xiayang Qiu; Andrew P. Seddon
Herpesviruses are the second leading cause of human viral diseases. Herpes Simplex Virus types 1 and 2 and Varicella-zoster virus produce neurotropic infections such as cutaneous and genital herpes, chickenpox, and shingles. Infections of a lymphotropic nature are caused by cytomegalovirus, HSV-6, HSV-7, and Epstein-Barr virus producing lymphoma, carcinoma, and congenital abnormalities. Yet another series of serious health problems are posed by infections in immunocompromised individuals. Common therapies for herpes viral infections employ nucleoside analogs, such as Acyclovir, and target the viral DNA polymerase, essential for viral DNA replication. Although clinically useful, this class of drugs exhibits a narrow antiviral spectrum, and resistance to these agents is an emerging problem for disease management. A better understanding of herpes virus replication will help the development of new safe and effective broad spectrum anti-herpetic drugs that fill an unmet need. Here, we present the first crystal structure of a herpesvirus polymerase, the Herpes Simplex Virus type 1 DNA polymerase, at 2.7 Å resolution. The structural similarity of this polymerase to other α polymerases has allowed us to construct high confidence models of a replication complex of the polymerase and of Acyclovir as a DNA chain terminator. We propose a novel inhibition mechanism in which a representative of a series of non-nucleosidic viral polymerase inhibitors, the 4-oxo-dihydroquinolines, binds at the polymerase active site interacting non-covalently with both the polymerase and the DNA duplex.
Antimicrobial Agents and Chemotherapy | 2002
Nancee L. Oien; Roger J. Brideau; Todd A. Hopkins; Janet L. Wieber; Mary L. Knechtel; John A. Shelly; Robert Anstadt; Peter A. Wells; Roger A. Poorman; Audris Huang; Vallerie A. Vaillancourt; Terrance L. Clayton; John A. Tucker; Michael W. Wathen
ABSTRACT Through broad screening of the compound library at Pharmacia, a naphthalene carboxamide was identified as a nonnucleoside inhibitor of human cytomegalovirus (HCMV) polymerase. Structure-activity relationship studies demonstrated that a quinoline ring could be substituted for naphthalene, resulting in the discovery of a 4-hydroxyquinoline-3-carboxamide (4-HQC) class of antiviral agents with unique biological properties. In vitro assays with the 4-HQCs have demonstrated potent inhibition of HCMV, herpes simplex virus type 1 (HSV-1), and varicella-zoster virus (VZV) polymerases but no inhibition of human α, δ, and γ polymerases. Antiviral cell culture assays have further confirmed that these compounds are active against HCMV, HSV-1, HSV-2, VZV, and many animal herpesviruses. However, these compounds were not active against several nonherpesviruses representing different DNA and RNA virus families. A strong correlation between the viral DNA polymerase and antiviral activity for this class of compounds supports inhibition of the viral polymerase as the mechanism of antiviral activity. Northern blot analysis of immediate-early and late viral transcripts also pointed to a block in the viral life cycle consistent with inhibition of viral DNA replication. In vitro HCMV polymerase assays indicate that the 4-HQCs are competitive inhibitors of nucleoside binding. However, no cross-resistance could be detected with ganciclovir-resistant HCMV or acyclovir-resistant HSV-1 mutants. The unique, broad-spectrum activities of the 4-HQCs may offer new opportunities for treating many of the diseases caused by herpesviruses.
Biochemistry | 2009
Aaron A. Thompson; Aihua Zou; Jiangli Yan; Rohit Duggal; Weidong Hao; David Molina; Ciarán N. Cronin; Peter A. Wells
While nonstructural protein 4B (NS4B) from hepatitis C virus (HCV) is absolutely required for viral propagation, a full understanding of the enzymatic properties of this protein is lacking. Previous studies suggest that NS4B is located at the endoplasmic reticulum and that the protein structure consists of four central transmembrane domains with the N- and C-termini located in the cytoplasm of the host cell. To characterize the enzymatic activity of NS4B, the full-length protein with a C-terminal His tag was expressed in Sf9 insect cells and stabilized with nonionic detergents during purification. Chemical cross-linking experiments using GTP-gamma-azidoanilide and ATP-gamma-azidoanilide and equilibrium binding analyses with GTPgammaS and ATPgammaS show that both GTP and ATP are bound by NS4B, with ATP displaying a higher affinity. Analyses of enzymatic reactions catalyzed by NS4B indicate that the terminal phosphate groups of ATP, GTP, and GDP are removed to produce ADP, GDP, and GMP, respectively. The k(cat) for hydrolysis of GTP by purified NS4B compared favorably with the k(cat) for hydrolysis of GTP by Ras-p21 in the absence of GTPase activating proteins (GAPs). In addition to the hydrolysis of NTP and NDP substrates, adenylate kinase activity was detected in purified preparations of NS4B with the reverse reaction 2ADP --> ATP + ADP, yielding a larger k(cat) compared to that of the forward reaction ATP + AMP --> 2ADP. These studies suggest that HCV NS4B possesses both adenylate kinase activity and nucleotide hydrolase activity. Mutation of amino acids in the Walker A and B motifs of NS4B resulted in decreased affinity for both GTPgammaS and ATPgammaS as well as decreased ATP hydrolysis and AK activity.
Molecular Cancer Therapeutics | 2012
Allison Rohner; Mary E. Spilker; Justine L. Lam; Bernadette Pascual; Darian Bartkowski; Qing John Li; Amy H. Yang; Greg Stevens; Meirong Xu; Peter A. Wells; Simon Paul Planken; Sajiv K. Nair; Shaoxian Sun
Inhibition of the Smoothened (Smo) represents a promising therapeutic strategy for treating malignant tumors that are dependent on the Hedgehog (Hh) signaling pathway. PF-5274857 is a novel Smo antagonist that specifically binds to Smo with a Ki of 4.6 ± 1.1 nmol/L and completely blocks the transcriptional activity of the downstream gene Gli1 with an IC50 of 2.7 ± 1.4 nmol/L in cells. This Smo antagonist showed robust antitumor activity in a mouse model of medulloblastoma with an in vivo IC50 of 8.9 ± 2.6 nmol/L. The downregulation of Gli1 is closely linked to the tumor growth inhibition in patched+/− medulloblastoma mice. Mathematical analysis of the relationship between the drugs pharmacokinetics and Gli1 pharmacodynamics in patched+/− medulloblastoma tumor models yielded similar tumor and skin Gli1 IC50 values, suggesting that skin can be used as a surrogate tissue for the measurement of tumor Gli1 levels. In addition, PF-5274857 was found to effectively penetrate the blood–brain barrier and inhibit Smo activity in the brain of primary medulloblastoma mice, resulting in improved animal survival rates. The brain permeability of PF-5274857 was also confirmed and quantified in nontumor-bearing preclinical species with an intact blood–brain barrier. PF-5274857 was orally available and metabolically stable in vivo. These findings suggest that PF-5274857 is a potentially attractive clinical candidate for the treatment of tumor types including brain tumors and brain metastasis driven by an activated Hh pathway. Mol Cancer Ther; 11(1); 57–65. ©2011 AACR.
ACS Medicinal Chemistry Letters | 2013
Hengmiao Cheng; Chunze Li; Simon Bailey; Sangita M. Baxi; Lance Goulet; Lisa Guo; Jacqui Elizabeth Hoffman; Ying Jiang; Theodore Otto Johnson; Ted W. Johnson; Daniel R. Knighton; John Li; Kevin Liu; Zhengyu Liu; Matthew A. Marx; Marlena Walls; Peter A. Wells; Min-Jean Yin; JinJiang Zhu; Michael Zientek
PI3K, AKT, and mTOR are key kinases from PI3K signaling pathway being extensively pursued to treat a variety of cancers in oncology. To search for a structurally differentiated back-up candidate to PF-04691502, which is currently in phase I/II clinical trials for treating solid tumors, a lead optimization effort was carried out with a tricyclic imidazo[1,5]naphthyridine series. Integration of structure-based drug design and physical properties-based optimization yielded a potent and selective PI3K/mTOR dual kinase inhibitor PF-04979064. This manuscript discusses the lead optimization for the tricyclic series, which both improved the in vitro potency and addressed a number of ADMET issues including high metabolic clearance mediated by both P450 and aldehyde oxidase (AO), poor permeability, and poor solubility. An empirical scaling tool was developed to predict human clearance from in vitro human liver S9 assay data for tricyclic derivatives that were AO substrates.
Experimental Eye Research | 2009
Ganesh Prasanna; Jay Fortner; Cathie Xiang; Eric Zhang; Samantha Carreiro; Scott Anderson; Soisurin Sartnurak; Grace Wu; Hovhannes J. Gukasyan; M.R. Niesman; Sajiv K. Nair; Eugene Rui; Jennifer Lafontaine; Chau Almaden; Peter A. Wells; A. Krauss
Prostaglandins are widely used to lower intraocular pressure (IOP) as part of the treatment regimen for glaucoma. While FP and EP2 agonists are known to lower IOP, we investigated the ocular hypotensive activity and ocular drug distribution of PF-04475270, a novel EP4 agonist following topical administration in normotensive Beagle dogs. PF-04475270 is a prodrug of CP-734432, which stimulated cAMP formation in HEK293 cells expressing EP4 receptor and beta-lactamase activity in human EP4 expressing CHO cells transfected with a cAMP response element (CRE) with an EC(50) of 1 nM. Prodrug conversion and transcorneal permeability were assessed in rabbit corneal homogenates and a human corneal epithelial cell (cHCE) model. The compound underwent rapid hydrolysis to CP-734432 in corneal homogenates, and exhibited good permeability in the cHCE model. The descending order of ocular exposure to CP-734432 after topical dosing of PF-04475270 in dogs was as follows: cornea > aqueous humor >or= iris/ciliary body. When administered q.d., PF-04475270 lowered IOP effectively in the dog IOP model both after single and multiple days of dosing. A maximum decrease in IOP with PF-04475270 was between 30 and 45% at 24h post-dose relative to that observed with vehicle. In conclusion, PF-04475270 is a novel ocular hypotensive compound which is bioavailable following topical dosing, effectively lowering IOP in dogs. EP4 agonists could be considered as potential targets for lowering IOP for the treatment of glaucoma and ocular hypertension.
Bioorganic & Medicinal Chemistry Letters | 2012
Kevin K.-C. Liu; Simon Bailey; Dac M. Dinh; Hieu Lam; Chunze Li; Peter A. Wells; Min-Jean Yin; Aihua Zou
Novel conformationally-restricted mTOR kinase inhibitors with cyclic sulfone scaffold were designed. Synthesis and structure-activity relationship (SAR) studies are described with emphasis on optimization of the mTOR potency and selectivity against class I PI3Kα kinase. PF-05139962 was identified with excellent mTOR biochemical inhibition, cellular potency, kinase selectivity and in vitro ADME properties.
ACS Medicinal Chemistry Letters | 2011
Kevin Liu; JinJiang Zhu; Graham L. Smith; Min-Jean Yin; Simon Bailey; Jeffrey H. Chen; Qiyue Hu; Qinhua Huang; Chunze Li; Qing J. Li; Matthew A. Marx; Genevieve Paderes; Paul F. Richardson; Neal W. Sach; Marlena Walls; Peter A. Wells; Aihua Zou
Highly selective PI3K inhibitors with subnanomolar PI3Kα potency and greater than 7000-fold selectivity against mTOR kinase were discovered through structure-based drug design (SBDD). These tetra-substituted thiophenes were also demonstrated to have good in vitro cellular potency and good in vivo oral antitumor activity in a mouse PI3K driven NCI-H1975 xenograft tumor model. Compounds with the desired human PK predictions and good in vitro ADMET properties were also identified. In this communication, we describe the rationale behind the installation of a critical triazole moiety to maintain the intricate H-bonding network within the PI3K receptor leading to both better potency and selectivity. Furthermore, optimization of the C-4 phenyl group was exploited to maximize the compounds mTOR selectivity.