Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Agre is active.

Publication


Featured researches published by Peter Agre.


Science | 1992

Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein

Gregory M. Preston; Tiziana Piazza Carroll; William B. Guggino; Peter Agre

Water rapidly crosses the plasma membrane of red blood cells (RBCs) and renal tubules through specialized channels. Although selective for water, the molecular structure of these channels is unknown. The CHIP28 protein is an abundant integral membrane protein in mammalian RBCs and renal proximal tubules and belongs to a family of membrane proteins with unknown functions. Oocytes from Xenopus laevis microinjected with in vitro-transcribed CHIP28 RNA exhibited increased osmotic water permeability; this was reversibly inhibited by mercuric chloride, a known inhibitor of water channels. Therefore it is likely that CHIP28 is a functional unit of membrane water channels.


Nature | 2000

Structural determinants of water permeation through aquaporin-1.

Kazuyoshi Murata; Kaoru Mitsuoka; Teruhisa Hirai; Thomas Walz; Peter Agre; J.B Heymann; Andreas Engel; Yoshinori Fujiyoshi

Human red cell AQP1 is the first functionally defined member of the aquaporin family of membrane water channels. Here we describe an atomic model of AQP1 at 3.8 Å resolution from electron crystallographic data. Multiple highly conserved amino-acid residues stabilize the novel fold of AQP1. The aqueous pathway is lined with conserved hydrophobic residues that permit rapid water transport, whereas the water selectivity is due to a constriction of the pore diameter to about 3 Å over a span of one residue. The atomic model provides a possible molecular explanation to a longstanding puzzle in physiology—how membranes can be freely permeable to water but impermeable to protons.


The Journal of Physiology | 2002

Aquaporin water channels – from atomic structure to clinical medicine

Peter Agre; Landon S. King; Masato Yasui; Wm B. Guggino; Ole Petter Ottersen; Yoshinori Fujiyoshi; Andreas Engel; Søren Nielsen

The water permeability of biological membranes has been a longstanding problem in physiology, but the proteins responsible for this remained unknown until discovery of the aquaporin 1 (AQP1) water channel protein. AQP1 is selectively permeated by water driven by osmotic gradients. The atomic structure of human AQP1 has recently been defined. Each subunit of the tetramer contains an individual aqueous pore that permits single‐file passage of water molecules but interrupts the hydrogen bonding needed for passage of protons. At least 10 mammalian aquaporins have been identified, and these are selectively permeated by water (aquaporins) or water plus glycerol (aquaglyceroporins). The sites of expression coincide closely with the clinical phenotypes ‐ ranging from congenital cataracts to nephrogenic diabetes insipidus. More than 200 members of the aquaporin family have been found in plants, microbials, invertebrates and vertebrates, and their importance to the physiology of these organisms is being uncovered.


Nature Reviews Molecular Cell Biology | 2004

From structure to disease : the evolving tale of aquaporin biology

Landon S. King; David Kozono; Peter Agre

Our understanding of the movement of water through cell membranes has been greatly advanced by the discovery of a family of water-specific, membrane-channel proteins — the aquaporins. These proteins are present in organisms at all levels of life, and their unique permeability characteristics and distribution in numerous tissues indicate diverse roles in the regulation of water homeostasis. The recognition of aquaporins has stimulated a reconsideration of membrane water permeability by investigators across a wide range of disciplines.


FEBS Letters | 2003

Aquaporin water channels: molecular mechanisms for human diseases1

Peter Agre; David Kozono

Although water is the major component of all biological fluids, the molecular pathways for water transport across cell membranes eluded identification until the discovery of the aquaporin family of water channels. The atomic structure of mammalian AQP1 illustrates how this family of proteins is freely permeated by water but not protons (hydronium ions, H3O+). Definition of the subcellular sites of expression predicted their physiological functions and potential clinical disorders. Analysis of several human disease states has confirmed that aquaporins are involved in multiple different illnesses including abnormalities of kidney function, loss of vision, onset of brain edema, starvation, and arsenic toxicity.


Journal of Biological Chemistry | 1998

The Aquaporins, Blueprints for Cellular Plumbing Systems

Peter Agre; Mélanie Bonhivers; Mario J. Borgnia

Membrane Water Permeability Plasma membranes provide an effective barrier to the extracellular environment. Water was long believed to move through lipid bilayers by simple diffusion; however, membranes from different tissues vary in their permeability to water. The variability is particularly evident in mammalian kidney where proximal tubules and descending thin limbs of Henle’s loop have constitutively high water permeability and are responsible for reabsorption of more than 150 liters per day in adult humans. In contrast, ascending thin limbs have very low water permeability. Renal distal tubules empty into collecting ducts where stimulation with vasopressin causes an increase in water permeability (see Ref. 1 for review). These observations led to the suggestion that specialized water transport molecules must exist in membranes with intrinsically high water permeability. Nevertheless, despite extensive studies, the molecular identity of water transport proteins remained elusive until recently. The well defined features of membrane water permeability permitted serendipitous identification of the first known water channel. While purifying the 32-kDa subunit of the red cell Rh blood group antigen, a new 28-kDa polypeptide was discovered (2). Detailed biochemical studies of this newly identified tetrameric membrane protein were made easy by its low solubility in N-lauroylsarcosine, which permitted simple purification (3). The abundance of the protein in rat renal proximal tubules and descending thin limbs (2) sparked the idea that the 28-kDa polypeptide may be the long sought water channel, and its unique N-terminal amino acid sequence permitted cloning from an erythroid cDNA library (4).


Nature | 1999

Rapid gating and anion permeability of an intracellular aquaporin

Masato Yasui; Akihiro Hazama; Tae-Hwan Kwon; Søren Nielsen; Wm. B. Guggino; Peter Agre

Aquaporin (AQP) water-channel proteins are freely permeated by water but not by ions or charged solutes. Although mammalian aquaporins were believed to be located in plasma membranes, rat AQP6 is restricted to intracellular vesicles in renal epithelia. Here we show that AQP6 is functionally distinct from other known aquaporins. When expressed in Xenopus laevis oocytes, AQP6 exhibits low basal water permeability; however, when treated with the known water channel inhibitor, Hg2+, the water permeability of AQP6 oocytes rapidly rises up to tenfold and is accompanied by ion conductance. AQP6 colocalizes with H+-ATPase in intracellular vesicles of acid-secreting α-intercalated cells in renal collecting duct. At pH less than 5.5, anion conductance is rapidly and reversibly activated in AQP6 oocytes. Site-directed mutation of lysine to glutamate at position 72 in the cytoplasmic mouth of the pore changes the cation/anion selectivity, but leaves low pH activation intact. Our results demonstrate unusual biophysical properties of an aquaporin, and indicate that anion-channel function may now be explored in a protein with known structure.


Nature | 1997

The three-dimensional structure of aquaporin-1

Thomas Walz; Teruhisa Hirai; Kazuyoshi Murata; J. Bernard Heymann; Kaoru Mitsuoka; Yoshinori Fujiyoshi; Barbara L. Smith; Peter Agre; Andreas Engel

The entry and exit of water from cells is a fundamental process of life. Recognition of the high water permeability of red blood cells led to the proposal that specialized water pores exist in the plasma membrane. Expression in Xenopus oocytes and functional studies of an erythrocyte integral membrane protein of relative molecular mass 28,000, identified it as the mercury-sensitive water channel, aquaporin-1 (AQP1). Many related proteins, all belonging to the major intrinsic protein (MIP) family, are found throughout nature. AQP1 is a homotetramer containing four independent aqueous channels. When reconstituted into lipid bilayers, the protein forms two-dimensional lattices with a unit cell containing two tetramers in opposite orientation. Here we present the three-dimensional structure of AQP1 determined at 6Å resolution by cryo-electron microscopy. Each AQP1 monomer has six tilted, bilayer-spanning α-helices which form a right-handed bundle surrounding a central density. These results, together with functional studies, provide a model that identifies the aqueous pore in the AQP1 molecule and indicates the organization of the tetrameric complex in the membrane.


Proceedings of the National Academy of Sciences of the United States of America | 2003

An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain

Mahmood Amiry-Moghaddam; Takashi Otsuka; Patricia D. Hurn; Richard J. Traystman; Finn-Mogens Haug; Stanley C. Froehner; Marvin E. Adams; John D. Neely; Peter Agre; Ole Petter Ottersen; Anish Bhardwaj

The water channel AQP4 is concentrated in perivascular and subpial membrane domains of brain astrocytes. These membranes form the interface between the neuropil and extracerebral liquid spaces. AQP4 is anchored at these membranes by its carboxyl terminus to α-syntrophin, an adapter protein associated with dystrophin. To test functions of the perivascular AQP4 pool, we studied mice homozygous for targeted disruption of the gene encoding α-syntrophin (α-Syn−/−). These animals show a marked loss of AQP4 from perivascular and subpial membranes but no decrease in other membrane domains, as judged by quantitative immunogold electron microscopy. In the basal state, perivascular and subpial astroglial end-feet were swollen in brains of α-Syn−/− mice compared to WT mice, suggesting reduced clearance of water generated by brain metabolism. When stressed by transient cerebral ischemia, brain edema was attenuated in α-Syn−/− mice, indicative of reduced water influx. Surprisingly, AQP4 was strongly reduced but α-syntrophin was retained in perivascular astroglial end-feet in WT mice examined 23 h after transient cerebral ischemia. Thus α-syntrophin-dependent anchoring of AQP4 is sensitive to ischemia, and loss of AQP4 from this site may retard the dissipation of postischemic brain edema. These studies identify a specific, syntrophin-dependent AQP4 pool that is expressed at distinct membrane domains and which mediates bidirectional transport of water across the brain–blood interface. The anchoring of AQP4 to α-syntrophin may be a target for treatment of brain edema, but therapeutic manipulations of AQP4 must consider the bidirectional water flux through this molecule.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9

Zijuan Liu; Jian Shen; Jennifer M. Carbrey; Rita Mukhopadhyay; Peter Agre; Barry P. Rosen

Much is known about the transport of arsenite and antimonite into microbes, but the identities of mammalian transport proteins are unknown. The Saccharomyces cerevisiae FPS1 gene encodes a membrane protein homologous to the bacterial aquaglyceroporin GlpF and to mammalian aquaglyceroporins AQP7 and AQP9. Fps1p mediates glycerol uptake and glycerol efflux in response to hypoosmotic shock. Fps1p has been shown to facilitate uptake of the metalloids arsenite and antimonite, and the Escherichia coli homolog, GlpF, facilitates the uptake and sensitivity to metalloid salts. In this study, the ability of mammalian aquaglyceroporins AQP7 and AQP9 to substitute for the yeast Fps1p was examined. The fps1Δ strain of S. cerevisiae exhibits increased tolerance to arsenite and antimonite compared to a wild-type strain. Introduction of a plasmid containing AQP9 reverses the metalloid tolerance of the deletion strain. AQP7 was not expressed in yeast. The fps1Δ cells exhibit reduced transport of 73As(III) or 125Sb(III), but uptake is enhanced by expression of AQP9. Xenopus laevis oocytes microinjected with either AQP7 or AQP9 cRNA exhibited increased transport of 73As(III). These results suggest that AQP9 and AQP7 may be a major routes of arsenite uptake into mammalian cells, an observation potentially of large importance for understanding the action of arsenite as a human toxin and carcinogen, as well as its efficacy as a chemotherapeutic agent for acute promyelocytic leukemia.

Collaboration


Dive into the Peter Agre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Engel

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Landon S. King

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mario J. Borgnia

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William B. Guggino

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge