Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Allen Nemoto is active.

Publication


Featured researches published by Peter Allen Nemoto.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of potent inhibitors of interleukin-2 inducible T-cell kinase (ITK) through structure-based drug design

Brian Nicholas Cook; Jörg Bentzien; Andre White; Peter Allen Nemoto; Ji Wang; Chuk Chui Man; Fariba Soleymanzadeh; Hnin Hnin Khine; Mohammed A. Kashem; Stanley Kugler; John P. Wolak; Gregory P. Roth; Stephane De Lombaert; Steven S. Pullen; Hidenori Takahashi

Interleukin-2 inducible T-cell kinase (ITK) is a member of the Tec kinase family and is involved with T-cell activation and proliferation. Due to its critical role in acting as a modulator of T-cells, ITK inhibitors could provide a novel route to anti-inflammatory therapy. This work describes the discovery of ITK inhibitors through structure-based design where high-resolution crystal structural information was used to optimize interactions within the kinase specificity pocket of the enzyme to improve both potency and selectivity.


Bioorganic & Medicinal Chemistry Letters | 2008

Discovery, SAR and X-ray structure of 1H-benzimidazole-5-carboxylic acid cyclohexyl-methyl-amides as inhibitors of inducible T-cell kinase (Itk)

Kevin J. Moriarty; Hidenori Takahashi; Steven S. Pullen; Hnin Hnin Khine; Rosemarie H. Sallati; Ernest L. Raymond; Joseph R. Woska; Deborah D. Jeanfavre; Gregory P. Roth; Michael P. Winters; Lei Qiao; Declan Ryan; Renee DesJarlais; Darius Robinson; Matthew A. Wilson; Mark Bobko; Brian Nicholas Cook; Ho Yin Lo; Peter Allen Nemoto; Mohammed A. Kashem; John P. Wolak; Andre White; Ronald L. Magolda; Bruce Tomczuk

A series of novel potent benzimidazole based inhibitors of interleukin-2 T-cell kinase (Itk) were prepared. In this report, we discuss the structure-activity relationship (SAR), selectivity, and cell-based activity for the series. We also discuss the SAR associated with an X-ray structure of one of the small-molecule inhibitors bound to ITK.


Bioorganic & Medicinal Chemistry Letters | 2009

The discovery of thienopyridine analogues as potent IκB kinase β inhibitors. Part II

Jiang-Ping Wu; Roman Wolfgang Fleck; Janice R. Brickwood; Alison Capolino; Katrina Mary Catron; Zhidong Chen; Charles L. Cywin; Jonathan Emeigh; Melissa Foerst; John David Ginn; Matt Hrapchak; Eugene R. Hickey; Ming-Hong Hao; Mohammed A. Kashem; Jun Li; Weimin Liu; Tina Marie Morwick; Richard M. Nelson; Daniel R. Marshall; Leslie Martin; Peter Allen Nemoto; Ian Potocki; Michel Liuzzi; Gregory W. Peet; Erika Scouten; David Stefany; Michael Robert Turner; Steve Weldon; Clare Zimmitti; Denise Spero

An SAR study that identified a series of thienopyridine-based potent IkappaB Kinase beta (IKKbeta) inhibitors is described. With focuses on the structural optimization at C4 and C6 of structure 1 (Fig. 1), the study reveals that small alkyl and certain aromatic groups are preferred at C4, whereas polar groups with proper orientation at C6 efficiently enhance compound potency. The most potent analogues inhibit IKKbeta with IC50s as low as 40 nM, suppress LPS-induced TNF-alpha production in vitro and in vivo, display good kinase selectivity profiles, and are active in a HeLa cell NF-kappaB reporter gene assay, demonstrating that they directly interfere with the NF-kappaB signaling pathway.


Bioorganic & Medicinal Chemistry Letters | 1997

Synthesis and preliminary structure-activity relationships of 1-[(3-fluoro-4-pyridinyl)amino]-3-methyl-1H-indol-5-yl methyl carbamate (P10358), a novel acetylcholinesterase inhibitor

Lawrence Leo Martin; Larry Davis; Joseph Thomas Klein; Peter Allen Nemoto; Gordon Edward Olsen; Gina M. Bores; Fernando Camacho; Wayne W. Petko; Douglas K. Rush; David E. Selk; Craig P. Smith; Hugo M. Vargas; James T. Winslow; Richard Charles Effland; David M. Fink

Abstract A series of carbamate analogs of besipirdine (HP 749) was synthesized as potential agents with enhanced cholinomimetic properties for the treatment of Alzheimers disease. Compound 5a (P10358, 1-[3-fluoro-4-pyridinyl)amino]-3-methyl-1H-indol-5-yl methyl carbamate) emerged as a potent, reversible acetylcholinesterase inhibitor that significantly enhanced performance on oral or parenteral administration in learning and memory paradigms.


Journal of Organic Chemistry | 2015

Development of an asymmetric synthesis of a chiral quaternary FLAP inhibitor.

Keith R. Fandrick; Jason A. Mulder; Nitinchandra D. Patel; Joe Gao; Michael Konrad; Elizabeth Archer; Frederic G. Buono; Adil Duran; Rolf Schmid; Juergen Daeubler; Jean-Nicolas Desrosiers; Xingzhong Zeng; Sonia Rodriguez; Shengli Ma; Bo Qu; Zhibin Li; Daniel R. Fandrick; Nelu Grinberg; Heewon Lee; Todd Bosanac; Hidenori Takahashi; Zhidong Chen; Alessandra Bartolozzi; Peter Allen Nemoto; Carl A. Busacca; Jinhua J. Song; Nathan K. Yee; Paige E. Mahaney; Chris H. Senanayake

A practical sequence involving a noncryogenic stereospecific boronate rearrangement followed by a robust formylation with an in situ generated DCM anion has been developed for the asymmetric construction of an all-carbon quaternary stereogenic center of a FLAP inhibitor. The key boronate rearrangement was rendered noncryogenic and robust by using LDA as the base and instituting an in situ trapping of the unstable lithiated benzylic carbamate with the boronic ester. A similar strategy was implemented for the DCM formylation reaction. It was found that the 1,2-boronate rearrangement for the formylation reaction could be temperature-controlled, thus preventing overaddition of the DCM anion and rendering the process reproducible. The robust stereospecific boronate rearrangement and formylation were utilized for the practical asymmetric synthesis of a chiral quaternary FLAP inhibitor.


Bioorganic & Medicinal Chemistry Letters | 2011

Benzimidazolone as potent chymase inhibitor: modulation of reactive metabolite formation in the hydrophobic (P1) region.

Ho Yin Lo; Peter Allen Nemoto; Jin Mi Kim; Ming-Hong Hao; Kevin Chungeng Qian; Neil A. Farrow; Daniel R. Albaugh; Danielle M. Fowler; Richard D. Schneiderman; E. Michael August; Leslie Martin; Melissa Hill-Drzewi; Steven S. Pullen; Hidenori Takahashi; Stephane De Lombaert

A new class of chymase inhibitor featuring a benzimidazolone core with an acid side chain and a P(1) hydrophobic moiety is described. Incubation of the lead compound with GSH resulted in the formation of a GSH conjugate on the benzothiophene P(1) moiety. Replacement of the benzothiophene with different heterocyclic systems such as indoles and benzoisothiazole is feasible. Among the P(1) replacements, benzoisothiazole prevents the formation of GSH conjugate and an in silico analysis of oxidative potentials agreed with the experimental outcome.


Bioorganic & Medicinal Chemistry Letters | 2017

Discovery and optimization of oxadiazole-based FLAP inhibitors

Alessandra Bartolozzi; Asitha Abeywardane; Todd Bosanac; John Alan Broadwater; Zhidong Chen; J. Matthew Hutzler; John D. Huber; Peter Allen Nemoto; Alan Olague; Doris Riether; Tom Simpson; Hidenori Takahashi; Lifen Wu; Yunlong Zhang; Renee M. Zindell

Structure activity relationship (SAR) investigation of an oxadiazole based series led to the discovery of several potent FLAP inhibitors. Lead optimization focused on achieving functional activity while improving physiochemical properties and reducing hERG inhibition. Several compounds with favorable in vitro and in vivo properties were identified that were suitable for advanced profiling.


Archive | 2003

Substituted benzimidazole compounds

Joerg Martin Bentzien; Brian Nicholas Cook; Charles L. Cywin; Roman Wolfgang Fleck; Ho Yin Lo; Peter Allen Nemoto; Steven S. Pullen; Gregory P. Roth; Roger J. Snow; Hidenori Takahashi; Ji Wang; Kevin J. Moriarty; Lei Qiao; Michael Winters


Archive | 2003

Substituted 3-amino-thieno[2,3-b]pyridine-2-carboxylic acid amide compounds and processes for preparing and their uses

Charles L. Cywin; Zhidong Chen; Jonathan Emeigh; Roman Wolfgang Fleck; Ming Hong Hao; Eugene R. Hickey; Weimin Will Liu; Daniel R. Marshall; Tina Marie Morwick; Peter Allen Nemoto; Ronald John Sorcek; Sanxing Sun; Jiang-Ping Wu


Archive | 2005

Tec kinase inhibitors

Joerg Martin Bentzien; Brian Nicholas Cook; Xiang Li; Ho Yin Lo; Chuk Chui Man; Ingo Andreas Mugge; Peter Allen Nemoto; Steven S. Pullen; Doris Riether; Gregory P. Roth; Fariba Soleymanzadeh; Hidenori Takahashi; Ji Wang; Andre White; Renee M. Zindell

Collaboration


Dive into the Peter Allen Nemoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge