Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter B. Adler is active.

Publication


Featured researches published by Peter B. Adler.


Oecologia | 2001

The effect of grazing on the spatial heterogeneity of vegetation

Peter B. Adler; D. A. Raff; William K. Lauenroth

Grazing can alter the spatial heterogeneity of vegetation, influencing ecosystem processes and biodiversity. Our objective was to identify why grazing causes increases in the spatial heterogeneity of vegetation in some cases, but decreases in others. The immediate effect of grazing on heterogeneity depends on the interaction between the spatial pattern of grazing and the pre-existing spatial pattern of vegetation. Depending on the scale of observation and on the factors that determine animal distribution, grazing patterns may be stronger or weaker than vegetation patterns, or may mirror the spatial structure of vegetation. For each possible interaction between these patterns, we make a prediction about resulting changes in the spatial heterogeneity of vegetation. Case studies from the literature support our predictions, although ecosystems characterized by strong plant-soil interactions present important exceptions. While the processes by which grazing causes increases in heterogeneity are clear, how grazing leads to decreases in heterogeneity is less so. To explore how grazing can consistently dampen the fine-scale spatial patterns of competing plant species, we built a cell-based simulation model that features two competing plant species, different grazing patterns, and different sources of vegetation pattern. Only the simulations that included neighborhood interactions as a source of vegetation pattern produced results consistent with the predictions we derived from the literature review.


Functional Ecology | 2015

Community assembly, coexistence and the environmental filtering metaphor

Nathan J. B. Kraft; Peter B. Adler; Oscar Godoy; Emily C. James; Steve Fuller; Jonathan M. Levine

Summary One of the most pervasive concepts in the study of community assembly is the metaphor of the environmental filter, which refers to abiotic factors that prevent the establishment or persistence of species in a particular location. The metaphor has its origins in the study of community change during succession and in plant community dynamics, although it has gained considerable attention recently as part of a surge of interest in functional trait and phylogenetic-based approaches to the study of communities. While the filtering metaphor has clear utility in some circumstances, it has been challenging to reconcile the environmental filtering concept with recent developments in ecological theory related to species coexistence. These advances suggest that the evidence used in many studies to assess environmental filtering is insufficient to distinguish filtering from the outcome of biotic interactions. We re-examine the environmental filtering metaphor from the perspective of coexistence theory. In an effort to move the discussion forward, we present a simple framework for considering the role of the environment in shaping community membership, review the literature to document the evidence typically used in environmental filtering studies and highlight research challenges to address in coming years. The current usage of the environmental filtering term in empirical studies likely overstates the role abiotic tolerances play in shaping community structure. We recommend that the term ‘environmental filtering’ only be used to refer to cases where the abiotic environment prevents establishment or persistence in the absence of biotic interactions, although only 15% of the studies in our review presented such evidence. Finally, we urge community ecologists to consider additional mechanisms aside from environmental filtering by which the abiotic environment can shape community pattern.


Ecology Letters | 2011

Global patterns of leaf mechanical properties

Yusuke Onoda; Mark Westoby; Peter B. Adler; Amy M.F. Choong; Fiona J. Clissold; Johannes H. C. Cornelissen; Sandra Díaz; Nathaniel J. Dominy; Alison A. Elgart; Lucas Enrico; Paul V. A. Fine; Jerome J. Howard; Adel Jalili; Kaoru Kitajima; Hiroko Kurokawa; Clare McArthur; Peter W. Lucas; Lars Markesteijn; Natalia Pérez-Harguindeguy; Lourens Poorter; Lora A. Richards; Louis S. Santiago; Enio Sosinski; Sunshine A. Van Bael; David I. Warton; Ian J. Wright; S. Joseph Wright; Nayuta Yamashita

Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Climate variability has a stabilizing effect on the coexistence of prairie grasses

Peter B. Adler; Janneke HilleRisLambers; Phaedon C. Kyriakidis; Qingfeng Guan; Jonathan M. Levine

How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a lack of appropriate long-term observations. Here, we analyze three decades of demographic data from a Kansas prairie to demonstrate that interannual climate variability promotes the coexistence of three common grass species. Specifically, we show that (i) the dynamics of the three species satisfy all requirements of “storage effect” theory based on recruitment variability with overlapping generations, (ii) climate variables are correlated with interannual variation in species performance, and (iii) temporal variability increases low-density growth rates, buffering these species against competitive exclusion. Given that environmental fluctuations are ubiquitous in natural systems, our results suggest that coexistence based on the storage effect may be underappreciated and could provide an important alternative to recent neutral theories of diversity. Field evidence for positive effects of variability on coexistence also emphasizes the need to consider changes in both climate means and variances when forecasting the effects of global change on species diversity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Functional traits explain variation in plant life history strategies

Peter B. Adler; Roberto Salguero-Gómez; Aldo Compagnoni; Joanna S. Hsu; Jayanti Ray-Mukherjee; Cyril Mbeau-Ache; Miguel Franco

Significance Plants have evolved diverse life history strategies to succeed in Earth’s varied environments. Some species grow quickly, produce copious seeds, and die within a few weeks. Other species grow slowly and rarely produce seeds but live thousands of years. We show that simple morphological measurements can predict where a species falls within the global range of life history strategies: species with large seeds, long-lived leaves, or dense wood have population growth rates influenced primarily by survival, whereas individual growth and fecundity have a stronger influence on the dynamics of species with small seeds, short-lived leaves, or soft wood. This finding increases the ability of scientists to represent complex population processes with a few easily measured character traits. Ecologists seek general explanations for the dramatic variation in species abundances in space and time. An increasingly popular solution is to predict species distributions, dynamics, and responses to environmental change based on easily measured anatomical and morphological traits. Trait-based approaches assume that simple functional traits influence fitness and life history evolution, but rigorous tests of this assumption are lacking, because they require quantitative information about the full lifecycles of many species representing different life histories. Here, we link a global traits database with empirical matrix population models for 222 species and report strong relationships between functional traits and plant life histories. Species with large seeds, long-lived leaves, or dense wood have slow life histories, with mean fitness (i.e., population growth rates) more strongly influenced by survival than by growth or fecundity, compared with fast life history species with small seeds, short-lived leaves, or soft wood. In contrast to measures of demographic contributions to fitness based on whole lifecycles, analyses focused on raw demographic rates may underestimate the strength of association between traits and mean fitness. Our results help establish the physiological basis for plant life history evolution and show the potential for trait-based approaches in population dynamics.


Nature | 2016

Integrative modelling reveals mechanisms linking productivity and plant species richness

James B. Grace; T. Michael Anderson; Eric W. Seabloom; Elizabeth T. Borer; Peter B. Adler; W. Stanley Harpole; Yann Hautier; Helmut Hillebrand; Eric M. Lind; Meelis Pärtel; Jonathan D. Bakker; Yvonne M. Buckley; Michael J. Crawley; Ellen I. Damschen; Kendi F. Davies; Philip A. Fay; Jennifer Firn; Daniel S. Gruner; Andy Hector; Johannes M. H. Knops; Andrew S. MacDougall; Brett A. Melbourne; John W. Morgan; John L. Orrock; Suzanne M. Prober; Melinda D. Smith

How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.


Ecology | 2005

Evidence for a general species-time-area relationship

Peter B. Adler; Ethan P. White; William K. Lauenroth; Dawn M. Kaufman; Andrew Rassweiler; James A. Rusak

The species-area relationship (SAR) plays a central role in biodiversity re- search, and recent work has increased awareness of its temporal analogue, the species- time relationship (STR). Here we provide evidence for a general species-time-area rela- tionship (STAR), in which species number is a function of the area and time span of sampling, as well as their interaction. For eight assemblages, ranging from lake zooplankton to desert rodents, this model outperformed a sampling-based model and two simpler models in which area and time had independent effects. In every case, the interaction term was negative, meaning that rates of species accumulation in space decreased with the time span of sampling, while species accumulation rates in time decreased with area sampled. Al- though questions remain about its precise functional form, the STAR provides a tool for scaling species richness across time and space, for comparing the relative rates of species turnover in space and time at different scales of sampling, and for rigorous testing of mechanisms proposed to drive community dynamics. Our results show that the SAR and STR are not separate relationships but two dimensions of one unified pattern.


Methods in Ecology and Evolution | 2014

Finding generality in ecology: a model for globally distributed experiments

Elizabeth T. Borer; W. Stanley Harpole; Peter B. Adler; Eric M. Lind; John L. Orrock; Eric W. Seabloom; Melinda D. Smith

Summary 1. Advancing the field of ecology relies on understanding generalities and developing theories based on empirical and functional relationships that integrate across organ ismal to global spatial scales and span temporal scales. Significant advances in predicting responses of ecological communities to globally extensive anthropogenic perturbations, for example, require understanding the role of environmental context in determining outcomes, which in turn requires standardized experiments across sites and regions. Distributed collaborative experiments can lead to high-impact advances that would otherwise be unachievable. 2. Here, we provide specific advice and considerations relevant to researchers interested in employing this emerging approach using as a case study our experience developing and running the Nutrient Network, a globally distributed experimental network (currently >75 sites in 17 countries) that arose from a grassroots, cooperative research effort. 3. We clarify the design, goals and function of the Nutrient Network as a model to empower others in the scientific community to employ distributed experiments to advance our predictive understanding of global-scale ecological trends and responses. 4. Our experiences to date demonstrate that globally distributed experimental science need not be prohibitively expensive or time-consuming on aper capita basis and is not limited to senior scientists or countries where science is well funded. While distributed experiments are not a panacea for understanding ecological systems, they can substantially complement existing approaches.


Nature plants | 2015

Grassland productivity limited by multiple nutrients

Philip A. Fay; Suzanne M. Prober; W. Stanley Harpole; Johannes M. H. Knops; Jonathan D. Bakker; Elizabeth T. Borer; Eric M. Lind; Andrew S. MacDougall; Eric W. Seabloom; Peter D. Wragg; Peter B. Adler; Dana M. Blumenthal; Yvonne M. Buckley; Chengjin Chu; Elsa E. Cleland; Scott L. Collins; Kendi F. Davies; Guozhen Du; Xiaohui Feng; Jennifer Firn; Daniel S. Gruner; Nicole Hagenah; Yann Hautier; Robert W. Heckman; Virginia L. Jin; Kevin P. Kirkman; Julia A. Klein; Laura M. Ladwig; Qi Li; Rebecca L. McCulley

Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4–8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.


Ecological Applications | 2005

PLANT TRAITS AND ECOSYSTEM GRAZING EFFECTS: COMPARISON OF U.S. SAGEBRUSH STEPPE AND PATAGONIAN STEPPE

Peter B. Adler; Daniel G. Milchunas; Osvaldo E. Sala; Ingrid C. Burke; William K. Lauenroth

Plant functional traits provide one tool for predicting the effects of grazing on different ecosystems. To test this approach, we compared plant traits and grazing response across analogous climatic gradients in sagebrush steppe, USA (SGBR), known to have a short evolutionary history of grazing, and Patagonian steppe, Argentina (PAT), where generalist herbivores exerted stronger selective pressures. We measured grazing response by sampling vegetation and soils across distance-from-water gradients at arid, semiarid, and subhumid study areas in both regions. Based on a previous analysis of graminoid traits, we predicted that: (1) high forage quality in all three SGBR communities would lead to high utilization and large grazing effects, whereas low quality in arid PAT would constrain utilization and grazing impacts, with semiarid and subhumid PAT intermediate in quality and grazing response; and (2) grazing in arid PAT would cause shifts in relative abundance within the graminoid functional group, due to the...

Collaboration


Dive into the Peter B. Adler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Firn

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric M. Lind

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Philip A. Fay

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge