Peter B. Dallas
Telethon Institute for Child Health Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter B. Dallas.
BMC Genomics | 2005
Peter B. Dallas; Nicholas G. Gottardo; Martin J. Firth; Alex H. Beesley; Katrin Hoffmann; Philippa A. Terry; Joseph R. Freitas; Joanne M. Boag; Aaron J. Cummings; Ursula R. Kees
BackgroundThe use of microarray technology to assess gene expression levels is now widespread in biology. The validation of microarray results using independent mRNA quantitation techniques remains a desirable element of any microarray experiment. To facilitate the comparison of microarray expression data between laboratories it is essential that validation methodologies be critically examined. We have assessed the correlation between expression scores obtained for 48 human genes using oligonucleotide microarrays and the expression levels for the same genes measured by quantitative real-time RT-PCR (qRT-PCR).ResultsCorrelations with qRT-PCR data were obtained using microarray data that were processed using robust multi-array analysis (RMA) and the MAS 5.0 algorithm. Our results indicate that when identical transcripts are targeted by the two methods, correlations between qRT-PCR and microarray data are generally strong (r = 0.89). However, we observed poor correlations between qRT-PCR and RMA or MAS 5.0 normalized microarray data for 13% or 16% of genes, respectively.ConclusionThese results highlight the complementarity of oligonucleotide microarray and qRT-PCR technologies for validation of gene expression measurements, while emphasizing the continuing requirement for caution in interpreting gene expression data.
Biochemical Journal | 2004
Xiaomei Wang; Norman G. Nagl; Deborah Wilsker; Michael Van Scoy; Stephen Pacchione; Peter Yaciuk; Peter B. Dallas; Elizabeth Moran
p270 (ARID1A) is a member of the ARID family of DNA-binding proteins and a subunit of human SWI/SNF-related complexes, which use the energy generated by an integral ATPase subunit to remodel chromatin. ARID1B is an independent gene product with an open reading frame that is more than 60% identical with p270. We have generated monoclonal antibodies specific for either p270 or ARID1B to facilitate the investigation of ARID1B and its potential interaction with human SWI/SNF complexes in vivo. Immunocomplex analysis provides direct evidence that endogenous ARID1B is associated with SWI/SNF-related complexes and indicates that p270 and ARID1B, similar to the ATPase subunits BRG1 and hBRM, are alternative, mutually exclusive subunits of the complexes. The ARID-containing subunits are not specific to the ATPases. Each associates with both BRG1 and hBRM, thus increasing the number of distinct subunit combinations known to be present in cells. Analysis of the panels of cell lines indicates that ARID1B, similar to p270, has a broad tissue distribution. The ratio of p270/ARID1B in typical cells is approx. 3.5:1, and BRG1 is distributed proportionally between the two ARID subunits. Analysis of DNA-binding behaviour indicates that ARID1B binds DNA in a non-sequence-specific manner similar to p270.
Molecular and Cellular Biology | 2000
Peter B. Dallas; Stephen Pacchione; Deborah Wilsker; Valerie Bowrin; Ryuji Kobayashi; Elizabeth Moran
ABSTRACT p270 is an integral member of human SWI-SNF complexes, first identified through its shared antigenic specificity with p300 and CREB binding protein. The deduced amino acid sequence of p270 reported here indicates that it is a member of an evolutionarily conserved family of proteins distinguished by the presence of a DNA binding motif termed ARID (AT-rich interactive domain). The ARID consensus and other structural features are common to both p270 and yeast SWI1, suggesting that p270 is a human counterpart of SWI1. The approximately 100-residue ARID sequence is present in a series of proteins strongly implicated in the regulation of cell growth, development, and tissue-specific gene expression. Although about a dozen ARID proteins can be identified from database searches, to date, only Bright (a regulator of B-cell-specific gene expression), dead ringer (a Drosophila melanogastergene product required for normal development), and MRF-2 (which represses expression from the cytomegalovirus enhancer) have been analyzed directly in regard to their DNA binding properties. Each binds preferentially to AT-rich sites. In contrast, p270 shows no sequence preference in its DNA binding activity, thereby demonstrating that AT-rich binding is not an intrinsic property of ARID domains and that ARID family proteins may be involved in a wider range of DNA interactions.
Molecular and Cellular Biology | 1998
Peter B. Dallas; Ian Wayne Cheney; Da-Wei Liao; Valerie Bowrin; Whitney Byam; Stephen Pacchione; Ryuji Kobayashi; Peter Yaciuk; Elizabeth Moran
ABSTRACT p300 and the closely related CREB binding protein (CBP) are transcriptional adaptors that are present in intracellular complexes with TATA binding protein (TBP) and bind to upstream activators including p53 and nuclear hormone receptors. They have intrinsic and associated histone acetyltransferase activity, suggesting that chromatin modification is an essential part of their role in regulating transcription. Detailed characterization of a panel of antibodies raised against p300/CBP has revealed the existence of a 270-kDa cellular protein, p270, distinct from p300 and CBP but sharing at least two independent epitopes with p300. The subset of p300/CBP-derived antibodies that cross-reacts with p270 consistently coprecipitates a series a cellular proteins with relative molecular masses ranging from 44 to 190 kDa. Purification and analysis of various proteins in this group reveals that they are components of the human SWI/SNF complex and that p270 is an integral member of this complex.
Cancer Research | 2005
Norman G. Nagl; Antonia Patsialou; Dale S. Haines; Peter B. Dallas; George R. Beck; Elizabeth Moran
Mammalian SWI/SNF-related complexes are ATPase-powered nucleosome remodeling assemblies crucial for proper development and tissue-specific gene expression. The ATPase activity of the complexes is also critical for tumor suppression. The complexes contain seven or more noncatalytic subunits; only one of which, hSNF5/Ini1/BAF47, has been individually identified as a tumor suppressor thus far. The noncatalytic subunits include p270/ARID1A, which is of particular interest because tissue array analysis corroborated by screening of tumor cell lines indicates that p270 may be deficient in as many as 30% of renal carcinomas and 10% of breast carcinomas. The complexes can also include an alternative ARID1B subunit, which is closely related to p270, but the product of an independent gene. The respective importance of p270 and ARID1B in the control of cell proliferation was explored here using a short interfering RNA approach and a cell system that permits analysis of differentiation-associated cell cycle arrest. The p270-depleted cells fail to undergo normal cell cycle arrest on induction, as evidenced by continued synthesis of DNA. These lines fail to show other characteristics typical of arrested cells, including up-regulation of p21 and down-regulation of cyclins. The requirement for p270 is evident separately in both the up-regulation of p21 and the down-regulation of E2F-responsive products. In contrast, the ARID1B-depleted lines behaved like the parental cells in these assays. Thus, p270-containing complexes are functionally distinct from ARID1B-containing complexes. These results provide a direct biological basis to support the implication from tumor tissue screens that deficiency of p270 plays a causative role in carcinogenesis.
International Journal of Cancer | 2004
Xiaomei Wang; Norman G. Nagl; Stephen Flowers; Daniel R. Zweitzig; Peter B. Dallas; Elizabeth Moran
Human SWI/SNF complexes use the energy of ATP hydrolysis to remodel chromosomes and alter gene expression patterns. The activity of the complexes generally promotes tissue‐specific gene expression and restricts cell proliferation. The ATPase that drives the complexes, BRG1, is essential for tumor suppression in mice and deficient in a variety of established human tumor cell lines. The complex contains at least 7 other core components, one of which is a large subunit designated p270. p270 RNA is expressed in all normal human tissues examined, but protein expression is severely reduced in at least 2 human tumor lines, C33A and T47D. We show here that loss of p270 in the C33A and T47D cell lines is evident at the RNA level as well as the protein level. The implication that p270 can be informatively screened at the RNA level made a high‐efficiency cancer profiling array approach to screening human tumors feasible. Expression was screened in an array containing RNA‐derived cDNA from 241 tumor and corresponding matched normal tissues from individual patients. p270 deficiency was observed at a higher overall frequency than BRG1 deficiency, but all tissues were not equally affected. Deficiency of p270 was observed most frequently in carcinomas of the breast and kidney. The results were most striking in kidney, where p270 expression was deficient in 30% of carcinoma samples screened. Screening of a panel of established human renal carcinoma–derived cell lines supports the frequency observed in the primary tumor tissue samples.
PLOS ONE | 2011
Laura A. Genovesi; Kim W. Carter; Nicholas G. Gottardo; Keith M. Giles; Peter B. Dallas
Medulloblastoma (MB) is the most common malignant brain tumor in children and a leading cause of cancer-related mortality and morbidity. Several molecular sub-types of MB have been identified, suggesting they may arise from distinct cells of origin. Data from animal models indicate that some MB sub-types arise from multipotent cerebellar neural stem cells (NSCs). Hence, microRNA (miRNA) expression profiles of primary MB samples were compared to CD133+ NSCs, aiming to identify deregulated miRNAs involved in MB pathogenesis. Expression profiling of 662 miRNAs in primary MB specimens, MB cell lines, and human CD133+ NSCs and CD133− neural progenitor cells was performed by qRT-PCR. Clustering analysis identified two distinct sub-types of MB primary specimens, reminiscent of sub-types obtained from their mRNA profiles. 21 significantly up-regulated and 12 significantly down-regulated miRNAs were identified in MB primary specimens relative to CD133+ NSCs (p<0.01). The majority of up-regulated miRNAs mapped to chromosomal regions 14q32 and 17q. Integration of the predicted targets of deregulated miRNAs with mRNA expression data from the same specimens revealed enrichment of pathways regulating neuronal migration, nervous system development and cell proliferation. Transient over-expression of a down-regulated miRNA, miR-935, resulted in significant down-regulation of three of the seven predicted miR-935 target genes at the mRNA level in a MB cell line, confirming the validity of this approach. This study represents the first integrated analysis of MB miRNA and mRNA expression profiles and is the first to compare MB miRNA expression profiles to those of CD133+ NSCs. We identified several differentially expressed miRNAs that potentially target networks of genes and signaling pathways that may be involved in the transformation of normal NSCs to brain tumor stem cells. Based on this integrative approach, our data provide an important platform for future investigations aimed at characterizing the role of specific miRNAs in MB pathogenesis.
BMC Research Notes | 2012
Laura A. Genovesi; Denise Anderson; Kim W. Carter; Keith M. Giles; Peter B. Dallas
BackgroundMedulloblastoma (MB) is the most common type of malignant childhood brain tumour. Although deregulated microRNA (miRNA) expression has been linked to MB pathogenesis, the selection of appropriate candidate endogenous control (EC) reference genes for MB miRNA expression profiling studies has not been systematically addressed. In this study we utilised reverse transcriptase quantitative PCR (RT-qPCR) to identify the most appropriate EC reference genes for the accurate normalisation of miRNA expression data in primary human MB specimens and neural stem cells.ResultsExpression profiling of 662 miRNAs and six small nuclear/ nucleolar RNAs in primary human MB specimens, two CD133+ neural stem cell (NSC) populations and two CD133- neural progenitor cell (NPC) populations was performed using TaqMan low-density array (TLDA) cards. Minimal intra-card variability for candidate EC reference gene replicates was observed, however significant inter-card variability was identified between replicates present on both TLDA cards A and B. A panel of 18 potentially suitable EC reference genes was identified for the normalisation of miRNA expression on TLDA cards. These candidates were not significantly differentially expressed between CD133+ NSCs/ CD133- NPCs and primary MB specimens. Of the six sn/snoRNA EC reference genes recommended by the manufacturer, only RNU44 was uniformly expressed between primary MB specimens and CD133+ NSC/CD133- NPC populations (P = 0.709; FC = 1.02). The suitability of candidate EC reference genes was assessed using geNorm and NormFinder software, with hsa-miR-301a and hsa-miR-339-5p found to be the most uniformly expressed EC reference genes on TLDA card A and hsa-miR-425* and RNU24 for TLDA card B.ConclusionsA panel of 18 potential EC reference genes that were not significantly differentially expressed between CD133+ NSCs/ CD133- NPCs and primary human MB specimens was identified. The top ranked EC reference genes described here should be validated in a larger cohort of specimens to verify their utility as controls for the normalisation of RT-qPCR data generated in MB miRNA expression studies. Importantly, inter-card variability observed between replicates of certain candidate EC reference genes has major implications for the accurate normalisation of miRNA expression data obtained using the miRNA TLDA platform.
Stem Cells and Development | 2010
Cornelia M. Bertram; Susan M. Hawes; Simone Egli; Swee Lim Peh; Mirella Dottori; Ursula R. Kees; Peter B. Dallas
Human embryonic stem cell-derived neural stem cells (hESC-NSCs) are an attractive cell type for studying aspects of brain development and pathology. To develop the full potential of this model system, it is important to establish a reliable methodology for the manipulation of gene expression in hNSCs. To address this issue, we used an adenoviral vector with a CMV promoter-driven green fluorescent protein (GFP) reporter gene (Ad5-GFP). We optimized conditions for Ad5-GFP infection and assessed the efficiency of infection of whole and dissociated embryonic stem cell (ESC)-derived neurospheres as well as the effect of adenoviral vectors on cell surface marker expression, proliferation, and differentiation potential. Our results demonstrate that most neurosphere cells ( approximately 70%) express the coxsackie and adenovirus receptor and can be infected with Ad5. More specifically, the CD133+ hESC-NSC population could be infected more efficiently than the CD133 population and both populations expressed GFP at high levels. At low multiplicity of infection (MOI < 25), the virus had no significant effect on stem cell marker expression (CD133 and Nestin), cell survival, cell proliferation rate, or differentiation potential. This model system provides a practical new approach to study human NSC function in the context of neurodegenerative and neoplastic disorders.
PLOS ONE | 2014
Cornelia M. Hooper; Susan M. Hawes; Ursula R. Kees; Nicholas G. Gottardo; Peter B. Dallas
Medulloblastoma is the most common form of malignant paediatric brain tumour and is the leading cause of childhood cancer related mortality. The four molecular subgroups of medulloblastoma that have been identified – WNT, SHH, Group 3 and Group 4 - have molecular and topographical characteristics suggestive of different cells of origin. Definitive identification of the cell(s) of origin of the medulloblastoma subgroups, particularly the poorer prognosis Group 3 and Group 4 medulloblastoma, is critical to understand the pathogenesis of the disease, and ultimately for the development of more effective treatment options. To address this issue, the gene expression profiles of normal human neural tissues and cell types representing a broad neuro-developmental continuum, were compared to those of two independent cohorts of primary human medulloblastoma specimens. Clustering, co-expression network, and gene expression analyses revealed that WNT and SHH medulloblastoma may be derived from distinct neural stem cell populations during early embryonic development, while the transcriptional profiles of Group 3 and Group 4 medulloblastoma resemble cerebellar granule neuron precursors at weeks 10–15 and 20–30 of embryogenesis, respectively. Our data indicate that Group 3 medulloblastoma may arise through abnormal neuronal differentiation, whereas deregulation of synaptic pruning-associated apoptosis may be driving Group 4 tumorigenesis. Overall, these data provide significant new insight into the spatio-temporal relationships and molecular pathogenesis of the human medulloblastoma subgroups, and provide an important framework for the development of more refined model systems, and ultimately improved therapeutic strategies.