Peter B. Rupert
Fred Hutchinson Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter B. Rupert.
Nature | 2001
Peter B. Rupert; Adrian R. Ferré-D'Amaré
The hairpin ribozyme catalyses sequence-specific cleavage of RNA. The active site of this natural RNA results from the docking of two irregular helices: stems A and B. One strand of stem A harbours the scissile bond. The 2.4 Å resolution structure of a hairpin ribozyme–inhibitor complex reveals that the ribozyme aligns the 2′-OH nucleophile and the 5′-oxo leaving group by twisting apart the nucleotides that flank the scissile phosphate. The base of the nucleotide preceding the cleavage site is stacked within stem A; the next nucleotide, a conserved guanine, is extruded from stem A and accommodated by a highly complementary pocket in the minor groove of stem B. Metal ions are absent from the active site. The bases of four conserved purines are positioned potentially to serve as acid-base catalysts. This is the first structure determination of a fully assembled ribozyme active site that catalyses a phosphodiester cleavage without recourse to metal ions.
Nature | 2014
Bruno E. Correia; John T. Bates; Rebecca Loomis; Gretchen Baneyx; Christopher Carrico; Joseph G. Jardine; Peter B. Rupert; Colin Correnti; Oleksandr Kalyuzhniy; Vinayak Vittal; Mary J. Connell; Eric Stevens; Alexandria Schroeter; Man Chen; Skye MacPherson; Andreia M. Serra; Yumiko Adachi; Margaret A. Holmes; Yuxing Li; Rachel E. Klevit; Barney S. Graham; Richard T. Wyatt; David Baker; Roland K. Strong; James E. Crowe; Philip R. Johnson; William R. Schief
Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.
PLOS Pathogens | 2013
Kathryn A. K. Finton; Kevin Larimore; H. Benjamin Larman; Della Friend; Colin Correnti; Peter B. Rupert; Stephen J. Elledge; Philip D. Greenberg; Roland K. Strong
The broadly-neutralizing anti-HIV antibody 4E10 recognizes an epitope in the membrane-proximal external region of the HIV envelope protein gp41. Previous attempts to elicit 4E10 by vaccination with envelope-derived or reverse-engineered immunogens have failed. It was presumed that the ontogeny of 4E10-equivalent responses was blocked by inherent autoreactivity and exceptional polyreactivity. We generated 4E10 heavy-chain knock-in mice, which displayed significant B cell dysregulation, consistent with recognition of autoantigen/s by 4E10 and the presumption that tolerance mechanisms may hinder the elicitation of 4E10 or 4E10-equivalent responses. Previously proposed candidate 4E10 autoantigens include the mitochondrial lipid cardiolipin and a nuclear splicing factor, 3B3. However, using carefully-controlled assays, 4E10 bound only weakly to cardiolipin-containing liposomes, but also bound negatively-charged, non-cardiolipin-containing liposomes comparably poorly. 4E10/liposome binding was predominantly mediated by electrostatic interactions rather than presumed hydrophobic interactions. The crystal structure of 4E10 free of bound ligands showed a dramatic restructuring of the combining site, occluding the HIV epitope binding site and revealing profound flexibility, but creating an electropositive pocket consistent with non-specific binding of phospholipid headgroups. These results strongly suggested that antigens other than cardiolipin mediate 4E10 autoreactivity. Using a synthetic peptide library spanning the human proteome, we determined that 4E10 displays limited and focused, but unexceptional, polyspecificity. We also identified a novel autoepitope shared by three ER-resident inositol trisphosphate receptors, validated through binding studies and immunohistochemistry. Tissue staining with 4E10 demonstrated reactivity consistent with the type 1 inositol trisphosphate receptor as the most likely candidate autoantigen, but is inconsistent with splicing factor 3B3. These results demonstrate that 4E10 recognition of liposomes competes with MPER recognition and that HIV antigen and autoepitope recognition may be distinct enough to permit eliciting 4E10-like antibodies, evading autoimmunity through directed engineering. However, 4E10 combining site flexibility, exceptional for a highly-matured antibody, may preclude eliciting 4E10 by conventional immunization strategies.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Benjamin E. Allred; Peter B. Rupert; Stacey Gauny; Dahlia D. An; Corie Ralston; Manuel Sturzbecher-Hoehne; Roland K. Strong; Rebecca J. Abergel
Significance The release of actinides in the environment, particularly after a nuclear power plant accident or the potential use of a radiological dispersal device, is a public health threat, as all actinides are radioactive and will trigger damage once internalized by the human body. The biological chemistry of actinide metal ions is largely unknown and new approaches to the understanding of pathways underlying contamination are needed. This work identifies a new mammalian pathway for the intracellular delivery of the radioactive toxic metal ions that are actinides, through the protein siderocalin. Spectroscopic tools, including X-ray diffraction and luminescence, provided insights on the coordination of these metal ions, which is crucial to devise new strategies for decontamination. Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.
Methods of Molecular Biology | 2004
Peter B. Rupert; Adrian R. Ferré-D’Amaré
Conditions and techniques that result in successful crystallization differ from RNA to RNA. However, there are some general principles that facilitate crystallization of most RNAs. Three procedures that were instrumental in obtaining well-ordered crystals of the hairpin ribozyme are described in this chapter. These are: i) the design of a series of candidate crystallization constructs; ii) the evaluation of conditions to obtain monodisperse RNA; and iii) the use of seeding techniques to separate nucleation and growth events during crystallization. These procedures can be usefully adapted for the crystallization of other RNAs.
Nature Chemistry | 2017
Gauthier J.-P. Deblonde; Manuel Sturzbecher-Hoehne; Peter B. Rupert; Dahlia D. An; Marie-Claire Illy; Corie Ralston; Jiri Brabec; Wibe A. de Jong; Roland K. Strong; Rebecca J. Abergel
Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin-a mammalian metal transporter-in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.
Acta Crystallographica Section D-biological Crystallography | 2003
Peter B. Rupert; Hong Xiao; Adrian R. Ferré-D'Amaré
The human U1A RNA-binding domain (RBD1) adopts one of the most common protein folds, the RNA-recognition motif, and is a paradigm for understanding RNA-protein interactions. A 2.8 A resolution structure of the unbound RBD1 has previously been determined [Nagai et al. (1990). Nature (London), 348, 515-520] and revealed a well defined alpha/beta core with disordered termini. Using a longer construct, a 1.8 A resolution structure of the unbound domain was determined that reveals an ordered C-terminal helix. The presence of this helix is consistent with a solution structure of the free domain [Avis et al. (1996). J. Mol. Biol. 257, 398-411]; however, in the solution structure the helix occludes the RNA-binding surface. In the present structure, the helix occupies a position similar to that seen in a 1.9 A resolution RNA-RBD1 complex structure [Oubridge et al. (1994). Nature (London), 372, 432-438]. The crystals in this study were grown from 2.2 M sodium malonate. It is possible that the high salt concentration helps to orient the C-terminal helix in the RNA-bound conformation by strengthening hydrophobic interactions between the buried face of the helix and the alpha/beta core of the protein. Alternatively, the malonate (several molecules of which are bound in the vicinity of the RNA-binding surface) may mimic RNA.
Structure | 2000
Peter B. Rupert; Adrian R. Ferré-D’Amaré
The recent structure determination of the phylogenetically conserved cor re of the signal recognition particle (SRP) reveals a novel of highly un usual RNA-protein interface, where non-canonical base pairs play a centr al role. The structure shows how a helix-turn-helix motif can be employ ed to bind RNA and offers hints as to how the signal peptide is recogniz ed by the SRP.
Science | 2002
Peter B. Rupert; Archna P. Massey; Snorri Th. Sigurdsson; Adrian R. Ferré-D'Amaré
Inorganic Chemistry | 2016
Ilya Captain; Gauthier J.-P. Deblonde; Peter B. Rupert; Dahlia D. An; Marie-Claire Illy; Emeline Rostan; Corie Ralston; Roland K. Strong; Rebecca J. Abergel