Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Bachert is active.

Publication


Featured researches published by Peter Bachert.


The Lancet | 1996

Nuclear magnetic resonance imaging with hyperpolarised helium-3

Michael Ebert; Tino Grossmann; W. Heil; E. W. Otten; Reinhard Surkau; Manfred Thelen; M. Leduc; Peter Bachert; Michael V. Knopp; Lothar R. Schad

BACKGROUND Magnetic resonance imaging (MRI) relies on magnetisation of hydrogen nuclei (protons) of water molecules in tissue as source of the signal. This technique has been valuable for studying tissues that contain significant amounts of water, but biological settings with low proton content, notably the lungs, are difficult to image. We report use of spin-polarised helium-3 for lung MRI. METHODS A volunteer inhaled hyperpolarised 3He to fill the lungs, which were imaged with a conventional MRI detector assembly. The nuclear spin polarisation of helium, and other noble gases, can be greatly enhanced by laser optical pumping and is about 10(5) times larger than the polarisation of water protons. This enormous gain in polarisation easily overcomes the loss in signal due to the lower density of the gas. FINDINGS The in-vivo experiment was done in a whole-body MRI scanner. The 3He image showed clear demarcation of the lung against diaphragm, heart, chest wall, and blood vessels (which gave no signal). The signal intensity within the air spaces was greatest in lung regions that are preferentially ventilated in the supine position; less well ventilated areas, such as the apices, showed a weaker signal. INTERPRETATION MRI with hyperpolarised 3He gas could be an alternative to established nuclear medicine methods. The ability to image air spaces offers the possibility of investigating physiological and pathophysiological processes in pulmonary ventilation and differences in its regional distribution.


Radiology | 2011

Cartilage Quality Assessment by Using Glycosaminoglycan Chemical Exchange Saturation Transfer and 23Na MR Imaging at 7 T

Benjamin Schmitt; Štefan Zbýň; David Stelzeneder; Vladimir Jellus; Dominik Paul; Lars Lauer; Peter Bachert; Siegfried Trattnig

PURPOSE To compare a glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging method, which enables sampling of the water signal as a function of the presaturation offset (z-spectrum) at 13 points in clinically feasible imaging times, with sodium 23 ((23)Na) magnetic resonance (MR) imaging in patients after cartilage repair surgery (matrix-associated autologous chondrocyte transplantation and microfracture therapy). MATERIALS AND METHODS One female patient (67.3 years), and 11 male patients (median age, 28.8 years; interquartile range [IQR], 24.6-32.3 years) were examined with a 7-T whole-body system, with approval of the local ethics committee after written informed consent was obtained. A modified three-dimensional gradient-echo sequence and a 28-channel knee coil were used for gagCEST imaging. (23)Na imaging was performed with a circularly polarized knee coil by using a modified gradient-echo sequence. Statistical analysis of differences and Spearman correlation were applied. RESULTS The median of asymmetries in gagCEST z-spectra summed over all offsets from 0 to 1.3 ppm was 7.99% (IQR, 6.33%-8.79%) in native cartilage and 5.13% (IQR, 2.64%-6.34%) in repair tissue. A strong correlation (r = 0.701; 95% confidence interval: 0.21, 0.91) was found between ratios of signal intensity from native cartilage to signal intensity from repair tissue obtained with gagCEST or (23)Na imaging. The median of dimensionless ratios between native cartilage and repair tissue was 1.28 (IQR, 1.20-1.58) for gagCEST and 1.26 (IQR, 1.21-1.48) for (23)Na MR imaging. CONCLUSION The high correlation between the introduced gagCEST method and (23)Na imaging implies that gagCEST is a potentially useful biomarker for glycosaminoglycans.


The Journal of Pediatrics | 1997

Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: Diagnostic tools for a new inborn error of metabolism

Andreas Schulze; T. Hess; R. Wevers; Ertan Mayatepek; Peter Bachert; B. Marescau; M.V. Knopp; P.P. de Deyn; H.J. Bremer; Dietz Rating

Hepatic guanidinoacetate methyltransferase deficiency induces a deficiency of creatine/phosphocreatine in muscle and brain and an accumulation of guanidinoacetic acid (GAA), the precursor of creatine. We describe a patient with this defect, a 4-year-old girl with a dystonic-dyskinetic syndrome in addition to developmental delay and therapy-resistant epilepsy. Several methods were used in the diagnosis of the disease: (1) the creatinine excretion in 24-hour urine was significantly lowered, whereas the creatinine concentration in plasma and in randomly collected urine was not strikingly different from control values; (2) the Sakaguchi staining reaction of guanidino compounds in random urine samples indicated an enhanced GAA excretion; (3) GAA excretion measured quantitatively by guanidino compound analysis using an amino acid analyzer was markedly elevated in random urine samples; (4) in vivo 1H magnetic resonance spectroscopy (MRS) revealed a strong depletion of creatine and an accumulation of GAA in brain; (5) in vivo phosphorus 31 MRS showed a strong decrease of the phosphocreatine resonance and a resonance identified as guanidinoacetate phosphate; and (6) in vitro 1H MRS showed an absence of creatine and creatinine resonances in cerebrospinal fluid and the occurrence of GAA in urine. For early detection of this disease, we recommend the Sakaguchi staining reaction of urine from patients with dystonic-dyskinetic syndrome, seizures, and psychomotor retardation. Positive results should result in further investigations including quantitative guanidino compound analysis and both in vivo and in vitro MRS. Although epilepsy was not affected by orally administered creatine (400 to 500 mg/kg per day), this treatment resulted in clinical improvement and an increase of creatine in cerebrospinal fluid and brain tissue.


Journal of Magnetic Resonance | 2011

Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra

Moritz Zaiß; Benjamin Schmitt; Peter Bachert

Chemical exchange saturation transfer (CEST) processes in aqueous systems are quantified by evaluation of z-spectra, which are obtained by acquisition of the water proton signal after selective RF presaturation at different frequencies. When saturation experiments are performed in vivo, three effects are contributing: CEST, direct water saturation (spillover), and magnetization transfer (MT) mediated by protons bound to macromolecules and bulk water molecules. To analyze the combined saturation a new analytical model is introduced which is based on the weak-saturation-pulse (WSP) approximation. The model combines three single WSP approaches to a general model function. Simulations demonstrated the benefits and constraints of the model, in particular the capability of the model to reproduce the ideal proton transfer rate (PTR) and the conventional MT rate for moderate spillover effects (up to 50% direct saturation at CEST-resonant irradiation). The method offers access to PTR from z-spectra data without further knowledge of the system, but requires precise measurements with dense saturation frequency sampling of z-spectra. PTR is related to physical parameters such as concentration, transfer rates and thereby pH or temperature of tissue, using either exogenous contrast agents (PARACEST, DIACEST) or endogenous agents such as amide protons and -OH protons of small metabolites.


Physics in Medicine and Biology | 2013

Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods.

Moritz Zaiss; Peter Bachert

Chemical exchange saturation transfer (CEST) of metabolite protons that undergo exchange processes with the abundant water pool enables a specific contrast for magnetic resonance imaging (MRI). The CEST image contrast depends on physical and physiological parameters that characterize the microenvironment such as temperature, pH, and metabolite concentration. However, CEST imaging in vivo is a complex technique because of interferences with direct water saturation (spillover effect), the involvement of other exchanging pools, in particular macromolecular systems (magnetization transfer, MT), and nuclear Overhauser effects (NOEs). Moreover, there is a strong dependence of the diverse effects on the employed parameters of radiofrequency irradiation for selective saturation which makes interpretation of acquired signals difficult. This review considers analytical solutions of the Bloch–McConnell (BM) equation system which enable deep insight and theoretical description of CEST and the equivalent off-resonant spinlock (SL) experiments. We derive and discuss proposed theoretical treatments in detail to understand the influence of saturation parameters on the acquired Z-spectrum and how the different effects interfere and can be isolated in MR Z-spectroscopy. Finally, we provide an overview of reported CEST effects in vivo and discuss proposed methods and technical approaches applicable to in vivo CEST studies on clinical MRI systems.


Neuroradiology | 2002

Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy.

H. P. Schlemmer; Peter Bachert; M. Henze; R. Buslei; Klaus Herfarth; Jürgen Debus; G. van Kaick

Abstract. We report on a young woman who was treated by stereotactic radiotherapy for recurrence of an initially resected low-grade astrocytoma. MRI follow-up examination 7 months after radiotherapy showed a gadolinium-DTPA-enhancing mass lesion indicative of high-grade tumor progression. This assumption was also supported by positron emission tomography with [2-18F]fluoro-2-deoxy-D–glucose (FDG-PET). In contrast, proton MR spectroscopy (1H-MRS) indicated radiation necrosis, which was confirmed histopathologically in surgical specimens. Subsequent follow-up examinations up to 19 months after surgery showed no evidence of tumor recurrence.


Annals of Neurology | 2003

Lack of creatine in muscle and brain in an adult with GAMT deficiency.

Andreas Schulze; Peter Bachert; Heinz Peter Schlemmer; Inga Harting; Tilman Polster; Gajja S. Salomons; Nanda M. Verhoeven; Cornelis Jakobs; Brian Fowler; Georg F. Hoffmann; Ertan Mayatepek

Guanidinoacetate methyltransferase deficiency, which so far has been exclusively detected in children, was diagnosed in a 26‐year‐old man. The full‐blown spectrum of clinical symptoms already had been present since infancy without progression of symptoms during adolescence. Cranial magnetic resonance imaging showed normal findings. Ophthalmological examination showed no retinal changes. Besides creatine deficiency in the brain, a distinct lack of phosphocreatine in skeletal muscle was proved by 31P magnetic resonance spectroscopy. Creatine substitution combined with a guanidinoacetate‐lowering diet introduced first at the age of 26 years was shown to be effective by an impressive improvement of epileptic seizures, mental capabilities, and general behavior and by normalization of the 31P spectrum in the skeletal muscle.


NMR in Biomedicine | 2014

Inverse Z-spectrum analysis for spillover-, MT-, and T1-corrected steady-state pulsed CEST-MRI – application to pH-weighted MRI of acute stroke

Moritz Zaiss; Junzhong Xu; Steffen Goerke; Imad Saeed Khan; Robert J. Singer; John C. Gore; Daniel F. Gochberg; Peter Bachert

Endogenous chemical exchange saturation transfer (CEST) effects are always diluted by competing effects, such as direct water proton saturation (spillover) and semi‐solid macromolecular magnetization transfer (MT). This leads to unwanted T2 and MT signal contributions that lessen the CEST signal specificity to the underlying biochemical exchange processes. A spillover correction is of special interest for clinical static field strengths and protons resonating near the water peak. This is the case for all endogenous CEST agents, such as amide proton transfer, –OH‐CEST of glycosaminoglycans, glucose or myo‐inositol, and amine exchange of creatine or glutamate. All CEST effects also appear to be scaled by the T1 relaxation time of water, as they are mediated by the water pool. This forms the motivation for simple metrics that correct the CEST signal.


NMR in Biomedicine | 2013

Exchange-dependent relaxation in the rotating frame for slow and intermediate exchange -- modeling off-resonant spin-lock and chemical exchange saturation transfer.

Moritz Zaiss; Peter Bachert

Chemical exchange observed by NMR saturation transfer (CEST) and spin‐lock (SL) experiments provide an MRI contrast by indirect detection of exchanging protons. The determination of the relative concentrations and exchange rates is commonly achieved by numerical integration of the Bloch–McConnell equations. We derive an analytical solution of the Bloch–McConnell equations that describes the magnetization of coupled spin populations under radiofrequency irradiation. As CEST and off‐resonant SL are equivalent, their steady‐state magnetization and dynamics can be predicted by the same single eigenvalue: the longitudinal relaxation rate in the rotating frame R1ρ. For the case of slowly exchanging systems, e.g. amide protons, the saturation of the small proton pool is affected by transverse relaxation (R2b). It turns out, that R2b is also significant for intermediate exchange, such as amine‐ or hydroxyl‐exchange or paramagnetic CEST agents, if pools are only partially saturated. We propose a solution for R1ρ that includes R2 of the exchanging pool by extending existing approaches, and verify it by numerical simulations. With the appropriate projection factors, we obtain an analytical solution for CEST and SL for nonzero R2 of the exchanging pool, exchange rates in the range 1–104 Hz, B1 from 0.1 to 20 μT and arbitrary chemical shift differences between the exchanging pools, whilst considering the dilution by direct water saturation across the entire Z‐spectra. This allows the optimization of irradiation parameters and the quantification of pH‐dependent exchange rates and metabolite concentrations. In addition, we propose evaluation methods that correct for concomitant direct saturation effects. It is shown that existing theoretical treatments for CEST are special cases of this approach. Copyright


NeuroImage | 2002

A Fully Automated Method for Tissue Segmentation and CSF-Correction of Proton MRSI Metabolites Corroborates Abnormal Hippocampal NAA in Schizophrenia

Wolfgang Weber-Fahr; Gabriele Ende; Dieter F. Braus; Peter Bachert; Brian J. Soher; Fritz A. Henn; Christian Büchel

In this report, we describe the implementation and application of a fully automated segmentation routine using SPM99 algorithms and MATLAB for clinical Magnetic Resonance Spectroscopic Imaging (MRSI) studies. By segmenting high-resolution 3-D image data and coregistering the results to the spatial localizer slices of a spectroscopy examination, the program offers the possibility to easily calculate segmentation maps for a large variety of MRSI experiments. The segmented data are corrected for the individual point-spread function, slice and VOI profiles for measurement sequences with selective pulses as well as for the chemical shifts of different metabolites. The new method was applied to investigate discrete hippocampal metabolite abnormalities in a small sample of schizophrenic patients in comparison to healthy controls (15 patients, 15 controls). Only after correction was the N-acetyl-aspartate (NAA) signal significantly lower in patients compared to controls. No differences were found for the corrected signals from the creatine/phosphocreatine (Cr) or choline-containing compounds (Ch). These results are in good agreement with neuropathological and previous MR spectroscopy studies of the hippocampus in schizophrenic patients.

Collaboration


Dive into the Peter Bachert's collaboration.

Researchain Logo
Decentralizing Knowledge