Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Péter Barthó is active.

Publication


Featured researches published by Péter Barthó.


Science | 2010

The Asynchronous State in Cortical Circuits

Alfonso Renart; Jaime de la Rocha; Péter Barthó; Liad Hollender; Néstor Parga; Alex D. Reyes; Kenneth D. Harris

Columns, Connections, and Correlations What is the nature of interactions between neurons in neural circuits? The prevalent hypothesis suggests that dense local connectivity causes nearby cortical neurons to receive substantial amounts of common input, which in turn leads to strong correlations between them. Now two studies challenge this view, which impacts our fundamental understanding of coding in the cortex. Ecker et al. (p. 584) investigated the statistics of correlated firing in pairs of neurons from area V1 of awake macaque monkeys. In contrast to previous studies, correlations turned out to be very low, irrespective of the stimulus being shown to the animals, the distances of the recording sites, and the similarity of the neurons receptive fields or response properties. In an accompanying modeling and recording paper, Renart et al. (p. 587) demonstrate how it is possible to have zero noise correlation, even among cells with common input. A general theoretical description of correlations in highly connected recurrent neuronal circuits. Correlated spiking is often observed in cortical circuits, but its functional role is controversial. It is believed that correlations are a consequence of shared inputs between nearby neurons and could severely constrain information decoding. Here we show theoretically that recurrent neural networks can generate an asynchronous state characterized by arbitrarily low mean spiking correlations despite substantial amounts of shared input. In this state, spontaneous fluctuations in the activity of excitatory and inhibitory populations accurately track each other, generating negative correlations in synaptic currents which cancel the effect of shared input. Near-zero mean correlations were seen experimentally in recordings from rodent neocortex in vivo. Our results suggest a reexamination of the sources underlying observed correlations and their functional consequences for information processing.


PLOS Biology | 2004

Calcium dynamics of cortical astrocytic networks in vivo.

Hajime Hirase; Lifen Qian; Péter Barthó; György Buzsáki

Large and long-lasting cytosolic calcium surges in astrocytes have been described in cultured cells and acute slice preparations. The mechanisms that give rise to these calcium events have been extensively studied in vitro. However, their existence and functions in the intact brain are unknown. We have topically applied Fluo-4 AM on the cerebral cortex of anesthetized rats, and imaged cytosolic calcium fluctuation in astrocyte populations of superficial cortical layers in vivo, using two-photon laser scanning microscopy. Spontaneous [Ca2+]i events in individual astrocytes were similar to those observed in vitro. Coordination of [Ca2+]i events among astrocytes was indicated by the broad cross-correlograms. Increased neuronal discharge was associated with increased astrocytic [Ca2+]i activity in individual cells and a robust coordination of [Ca2+]i signals in neighboring astrocytes. These findings indicate potential neuron–glia communication in the intact brain.


European Journal of Neuroscience | 2002

Selective GABAergic innervation of thalamic nuclei from zona incerta

Péter Barthó; Tamás F. Freund; László Acsády

Thalamocortical circuits that govern cortical rhythms and ultimately effect sensory transmission consist of three major interconnected elements: excitatory thalamocortical and corticothalamic neurons and GABAergic cells in the reticular thalamic nucleus. Based on the present results, a fourth component has to be added to this scheme. GABAergic fibres from an extrareticular diencephalic source were found to selectively innervate relay cells located mainly in higher‐order thalamic nuclei. The origin of this pathway was localized to zona incerta (ZI), known to receive collaterals from corticothalamic fibres. First‐order nuclei were innervated only in zones showing a high density of calbindin‐positive neurons. The large GABA‐immunoreactive incertal terminals established multiple contacts preferentially on the proximal dendrites of relay cells via symmetrical synapses with multiple release sites. The distribution, ultrastructural characteristics and postsynaptic target selection of extrareticular terminals were similar to type II muscarinic acetylcholine receptor‐positive boutons, which constituted up to 49% of all GABAergic terminals in the posterior nucleus. This suggests that a significant proportion of the GABAergic input into certain thalamic territories involved in higher‐order functions may have extrareticular origin. Unlike the reticular nucleus, ZI receives peripheral and layer V cortical input but no thalamic feedback; it projects to brainstem centres and has extensive intranuclear recurrent collaterals. This indicates that ZI exerts a conceptually new type of inhibitory control over the thalamus. The proximally situated, multiple active zones of ZI terminals indicate a powerful influence on the firing properties of thalamic neurons, which is conveyed to multiple cortical areas via relay cells which have widespread projections to neocortex.


Nature | 2015

Diverse coupling of neurons to populations in sensory cortex

Michael Okun; Nicholas A. Steinmetz; Lee Cossell; M. Florencia Iacaruso; Ho Ko; Péter Barthó; Tirin Moore; Sonja B. Hofer; Thomas D. Mrsic-Flogel; Matteo Carandini; Kenneth Harris

A large population of neurons can, in principle, produce an astronomical number of distinct firing patterns. In cortex, however, these patterns lie in a space of lower dimension, as if individual neurons were “obedient members of a huge orchestra”. Here we use recordings from the visual cortex of mouse (Mus musculus) and monkey (Macaca mulatta) to investigate the relationship between individual neurons and the population, and to establish the underlying circuit mechanisms. We show that neighbouring neurons can differ in their coupling to the overall firing of the population, ranging from strongly coupled ‘choristers’ to weakly coupled ‘soloists’. Population coupling is largely independent of sensory preferences, and it is a fixed cellular attribute, invariant to stimulus conditions. Neurons with high population coupling are more strongly affected by non-sensory behavioural variables such as motor intention. Population coupling reflects a causal relationship, predicting the response of a neuron to optogenetically driven increases in local activity. Moreover, population coupling indicates synaptic connectivity; the population coupling of a neuron, measured in vivo, predicted subsequent in vitro estimates of the number of synapses received from its neighbours. Finally, population coupling provides a compact summary of population activity; knowledge of the population couplings of n neurons predicts a substantial portion of their n2 pairwise correlations. Population coupling therefore represents a novel, simple measure that characterizes the relationship of each neuron to a larger population, explaining seemingly complex network firing patterns in terms of basic circuit variables.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus

Marie Vandecasteele; Viktor Varga; Antal Berényi; Edit Papp; Péter Barthó; Laurent Venance; Tamás F. Freund; György Buzsáki

Significance Theta oscillations are a prominent rhythm of the brain occurring during active behavior and rapid eye movement sleep and thought to provide the temporal frame for the encoding of information. Acetylcholine modulation is a major player in hippocampal theta rhythm, as demonstrated by lesion and pharmacological manipulations of cholinergic receptors, yet the link between the activity of septal cholinergic neurons and the theta rhythm is not fully understood. We used specific optogenetic stimulation of the septo-hippocampal cholinergic neurons in the anesthetized and behaving mouse to decipher the effects of cholinergic stimulation on hippocampal network activity and show that in addition to promoting theta oscillations it suppresses sharp wave ripples and peri-theta band activity. Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5–2 Hz in anesthetized, 0.5–4 Hz in behaving animals) and supratheta (6–10 Hz in anesthetized, 10–25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2–6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4–10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.


The Journal of Neuroscience | 2013

Gating of Sensory Input by Spontaneous Cortical Activity

Artur Luczak; Péter Barthó; Kenneth D. Harris

The activity of neural populations is determined not only by sensory inputs but also by internally generated patterns. During quiet wakefulness, the brain produces spontaneous firing events that can spread over large areas of cortex and have been suggested to underlie processes such as memory recall and consolidation. Here we demonstrate a different role for spontaneous activity in sensory cortex: gating of sensory inputs. We show that population activity in rat auditory cortex is composed of transient 50–100 ms packets of spiking activity that occur irregularly during silence and sustained tone stimuli, but reliably at tone onset. Population activity within these packets had broadly consistent spatiotemporal structure, but the rate and also precise relative timing of action potentials varied between stimuli. Packet frequency varied with cortical state, with desynchronized state activity consistent with superposition of multiple overlapping packets. We suggest that such packets reflect the sporadic opening of a “gate” that allows auditory cortex to broadcast a representation of external sounds to other brain regions.


The Journal of Neuroscience | 2007

Cortical control of zona incerta.

Péter Barthó; Andrea Slézia; Viktor Varga; Hajnalka Bokor; Didier Pinault; György Buzsáki; László Acsády

The zona incerta (ZI) is at the crossroad of almost all major ascending and descending fiber tracts and targets numerous brain centers from the thalamus to the spinal cord. Effective ascending drive of ZI cells has been described, but the role of descending cortical signals in patterning ZI activity is unknown. Cortical control over ZI function was examined during slow cortical waves (1–3 Hz), paroxysmal high-voltage spindles (HVSs), and 5–9 Hz oscillations in anesthetized rats. In all conditions, rhythmic cortical activity significantly altered the firing pattern of ZI neurons recorded extracellularly and labeled with the juxtacellular method. During slow oscillations, the majority of ZI neurons became synchronized to the depth-negative phase (“up state”) of the cortical waves to a degree comparable to thalamocortical neurons. During HVSs, ZI cells displayed highly rhythmic activity in tight synchrony with the cortical oscillations. ZI neurons responded to short epochs of cortical 5–9 Hz oscillations, with a change in the interspike interval distribution and with an increase in spectral density in the 5–9 Hz band as measured by wavelet analysis. Morphological reconstruction revealed that most ZI cells have mediolaterally extensive dendritic trees and very long dendritic segments. Cortical terminals established asymmetrical synapses on ZI cells with very long active zones. These data suggest efficient integration of widespread cortical signals by single ZI neurons and strong cortical drive. We propose that the efferent GABAergic signal of ZI neurons patterned by the cortical activity can play a critical role in synchronizing thalamocortical and brainstem rhythms.


Neuron | 2013

Formation and Reverberation of Sequential Neural Activity Patterns Evoked by Sensory Stimulation Are Enhanced during Cortical Desynchronization

Edgar Bermudez Contreras; Andrea Gomez Palacio Schjetnan; Arif Muhammad; Péter Barthó; Bruce L. McNaughton; Bryan Kolb; Aaron J. Gruber; Artur Luczak

Memory formation is hypothesized to involve the generation of event-specific neural activity patterns during learning and the subsequent spontaneous reactivation of these patterns. Here, we present evidence that these processes can also be observed in urethane-anesthetized rats and are enhanced by desynchronized brain state evoked by tail pinch, subcortical carbachol infusion, or systemic amphetamine administration. During desynchronization, we found that repeated tactile or auditory stimulation evoked unique sequential patterns of neural firing in somatosensory and auditory cortex and that these patterns then reoccurred during subsequent spontaneous activity, similar to what we have observed in awake animals. Furthermore, the formation of these patterns was blocked by an NMDA receptor antagonist, suggesting that the phenomenon depends on synaptic plasticity. These results suggest that anesthetized animals with a desynchronized brain state could serve as a convenient model for studying stimulus-induced plasticity to improve our understanding of memory formation and replay in the brain.


European Journal of Neuroscience | 2004

Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei.

Péter Barthó; John A. Payne; Tamás F. Freund; László Acsády

In the thalamus of the rat the reversal potential of GABA‐induced anion currents is more negative in relay cells than in neurones of the reticular nucleus (nRt) due to different chloride extrusion mechanisms operating in these cells. The distribution of KCl cotransporter type 2 (KCC2), the major neuronal chloride transporter that may underlie this effect, is unknown in the thalamus. In this study the precise regional and ultrastructural localization of KCC2 was examined in the thalamus using immunocytochemical methods. The neuropil of all relay nuclei was found to display intense KCC2 immunostaining to varying degrees. In sharp contrast, the majority of the nRt was negative for KCC2. In the anterior and dorsal part of the nRt, however, KCC2 immunostaining was similar to relay nuclei and parvalbumin and calretinin were found to colocalize with KCC2. At the ultrastructural level, KCC2 immunoreactivity was mainly located in the extrasynaptic membranes of thick and thin dendrites and the somata of relay cells but was also found in close association with asymmetrical synapses formed by cortical afferents. Quantitative evaluation of KCC2 distribution at the electron microscopic level demonstrated that the density of KCC2 did not correlate with dendritic diameter or synaptic coverage but is 1.7 times higher on perisynaptic membrane surfaces than on extrasynaptic membranes. Our data demonstrate that the regional distribution of KCC2 is compatible with the difference in GABA‐A reversal potential between relay and reticular nuclei. At the ultrastructural level, abundant extrasynaptic KCC2 expression will probably play a role in the regulation of extrasynaptic GABA‐A receptor‐mediated inhibition.


Neuron | 2014

Ongoing Network State Controls the Length of Sleep Spindles via Inhibitory Activity

Péter Barthó; Andrea Slézia; Ferenc Mátyás; Lejla Faradzs-Zade; István Ulbert; Kenneth D. Harris; László Acsády

Summary Sleep spindles are major transient oscillations of the mammalian brain. Spindles are generated in the thalamus; however, what determines their duration is presently unclear. Here, we measured somatic activity of excitatory thalamocortical (TC) cells together with axonal activity of reciprocally coupled inhibitory reticular thalamic cells (nRTs) and quantified cycle-by-cycle alterations in their firing in vivo. We found that spindles with different durations were paralleled by distinct nRT activity, and nRT firing sharply dropped before the termination of all spindles. Both initial nRT and TC activity was correlated with spindle length, but nRT correlation was more robust. Analysis of spindles evoked by optogenetic activation of nRT showed that spindle probability, but not spindle length, was determined by the strength of the light stimulus. Our data indicate that during natural sleep a dynamically fluctuating thalamocortical network controls the duration of sleep spindles via the major inhibitory element of the circuits, the nRT.

Collaboration


Dive into the Péter Barthó's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

László Acsády

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Slézia

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Viktor Varga

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Okun

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge