Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Péter Batáry is active.

Publication


Featured researches published by Péter Batáry.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009

On the relationship between farmland biodiversity and land-use intensity in Europe

David Kleijn; F. Kohler; András Báldi; Péter Batáry; Elena D. Concepción; Yann Clough; Mario Díaz; Doreen Gabriel; Andrea Holzschuh; Eva Knop; A. Kovács; E. J. P. Marshall; Teja Tscharntke; Jort Verhulst

Worldwide agriculture is one of the main drivers of biodiversity decline. Effective conservation strategies depend on the type of relationship between biodiversity and land-use intensity, but to date the shape of this relationship is unknown. We linked plant species richness with nitrogen (N) input as an indicator of land-use intensity on 130 grasslands and 141 arable fields in six European countries. Using Poisson regression, we found that plant species richness was significantly negatively related to N input on both field types after the effects of confounding environmental factors had been accounted for. Subsequent analyses showed that exponentially declining relationships provided a better fit than linear or unimodal relationships and that this was largely the result of the response of rare species (relative cover less than 1%). Our results indicate that conservation benefits are disproportionally more costly on high-intensity than on low-intensity farmland. For example, reducing N inputs from 75 to 0 and 400 to 60 kg ha−1 yr−1 resulted in about the same estimated species gain for arable plants. Conservation initiatives are most (cost-)effective if they are preferentially implemented in extensively farmed areas that still support high levels of biodiversity.


Proceedings of the Royal Society of London B: Biological Sciences | 2011

Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis.

Péter Batáry; András Báldi; David Kleijn; Teja Tscharntke

Agri-environmental management (AEM) is heralded as being key to biodiversity conservation on farmland, yet results of these schemes have been mixed, making their general utility questionable. We test with meta-analysis whether the benefits of AEM for species richness and abundance of plants and animals are determined by the surrounding landscape context. Across all studies (109 observations for species richness and 114 observations for abundance), AEM significantly increased species richness and their abundance. More specifically, we test the hypothesis that AEM benefits species richness and abundance (i.e. increases the difference between fields with and without AEM) more in simple than in complex landscapes. In croplands, species richness but not abundance was significantly enhanced in simple but not in complex landscapes. In grasslands, AEM effectively enhanced species richness and abundance regardless of landscape context. Pollinators were significantly enhanced by AEM in simple but not in complex landscapes in both croplands and grasslands. Our results highlight that the one-size-fits-all approach of many agri-environmental programmes is not an efficient way of spending the limited funds available for biodiversity conservation on farmland. Therefore, we conclude that AEM should be adapted to landscape structure and the species groups at which they are targeted.


Nature Communications | 2015

Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

David Kleijn; Rachael Winfree; Ignasi Bartomeus; Luísa G. Carvalheiro; Mickaël Henry; Rufus Isaacs; Alexandra-Maria Klein; Claire Kremen; Leithen K. M'Gonigle; Romina Rader; Taylor H. Ricketts; Neal M. Williams; Nancy Lee Adamson; John S. Ascher; András Báldi; Péter Batáry; Faye Benjamin; Jacobus C. Biesmeijer; Eleanor J. Blitzer; Riccardo Bommarco; Mariëtte R. Brand; Vincent Bretagnolle; Lindsey Button; Daniel P. Cariveau; Rémy Chifflet; Jonathan F. Colville; Bryan N. Danforth; Elizabeth Elle; Michael P. D. Garratt; Felix Herzog

There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.


Conservation Biology | 2015

The role of agri-environment schemes in conservation and environmental management

Péter Batáry; Lynn V. Dicks; David Kleijn; William J. Sutherland

Over half of the European landscape is under agricultural management and has been for millennia. Many species and ecosystems of conservation concern in Europe depend on agricultural management and are showing ongoing declines. Agri-environment schemes (AES) are designed partly to address this. They are a major source of nature conservation funding within the European Union (EU) and the highest conservation expenditure in Europe. We reviewed the structure of current AES across Europe. Since a 2003 review questioned the overall effectiveness of AES for biodiversity, there has been a plethora of case studies and meta-analyses examining their effectiveness. Most syntheses demonstrate general increases in farmland biodiversity in response to AES, with the size of the effect depending on the structure and management of the surrounding landscape. This is important in the light of successive EU enlargement and ongoing reforms of AES. We examined the change in effect size over time by merging the data sets of 3 recent meta-analyses and found that schemes implemented after revision of the EUs agri-environmental programs in 2007 were not more effective than schemes implemented before revision. Furthermore, schemes aimed at areas out of production (such as field margins and hedgerows) are more effective at enhancing species richness than those aimed at productive areas (such as arable crops or grasslands). Outstanding research questions include whether AES enhance ecosystem services, whether they are more effective in agriculturally marginal areas than in intensively farmed areas, whether they are more or less cost-effective for farmland biodiversity than protected areas, and how much their effectiveness is influenced by farmer training and advice? The general lesson from the European experience is that AES can be effective for conserving wildlife on farmland, but they are expensive and need to be carefully designed and targeted. El Papel de los Esquemas Agro-Ambientales en la Conservación y el Manejo Ambiental Batáry et al. Resumen Más de la mitad de las tierras europeas está bajo manejo agrícola y así ha sido durante milenios. Muchas especies y ecosistemas de interés de conservación en Europa dependen del manejo agrícola y están mostrando una declinación continua. Los esquemas agro-ambientales (EAA) están diseñados en parte para encarar esto. Los esquemas son una gran fuente de financiamiento para la conservación dentro de la Unión Europea (UE) y el mayor gasto de conservación en Europa. Revisamos la estructura de los EAA actuales a lo largo del continente. Desde que en 2003 una revisión cuestionó la efectividad general de los EAA para la biodiversidad, ha habido una plétora de estudios de caso y meta-análisis que examinan su efectividad. La mayoría de las síntesis demuestran un incremento general en la biodiversidad de las tierras de cultivo en respuesta a los EAA, con la magnitud del efecto dependiente de la estructura y el manejo del terreno circundante. Esto es importante a la luz del crecimiento sucesivo de la UE y las continuas reformas a los EAA. Examinamos el cambio en la magnitud del efecto a través del tiempo al fusionar los conjuntos de datos de tres meta-análisis recientes y encontramos que los esquemas implementados después de la revisión de los programas agro-ambientales de la UE en 2007 no fueron más efectivos que los esquemas implementados antes de la revisión. Además, los esquemas enfocados en las áreas fuera de producción (como los márgenes de campo y los setos vivos) son más efectivos en el mejoramiento de la riqueza de especies que aquellos enfocados en las áreas productivas (como los cultivos arables y los pastizales). Las preguntas sobresalientes de la investigación incluyen si los EAA mejoran los servicios ambientales, si son más efectivos en las áreas agrícolas marginales que en las áreas de cultivo intensivo, si son más o menos rentables para la biodiversidad de las tierras de cultivo que las áreas protegidas, y en cuánto influye sobre su efectividad los consejos y el entrenamiento dado a los granjeros. La lección general de la experiencia europea es que los EAA pueden ser efectivos para la conservación de la vida silvestre en las tierras de cultivo, pero son caros y necesitan ser diseñados y enfocados cuidadosamente.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Biodiversity conservation in agriculture requires a multi-scale approach

David J. Gonthier; Katherine K. Ennis; Serge Farinas; Hsun Yi Hsieh; Aaron L. Iverson; Péter Batáry; Jörgen Rudolphi; Teja Tscharntke; Bradley J. Cardinale; Ivette Perfecto

Biodiversity loss—one of the most prominent forms of modern environmental change—has been heavily driven by terrestrial habitat loss and, in particular, the spread and intensification of agriculture. Expanding agricultural land-use has led to the search for strong conservation strategies, with some suggesting that biodiversity conservation in agriculture is best maximized by reducing local management intensity, such as fertilizer and pesticide application. Others highlight the importance of landscape-level approaches that incorporate natural or semi-natural areas in landscapes surrounding farms. Here, we show that both of these practices are valuable to the conservation of biodiversity, and that either local or landscape factors can be most crucial to conservation planning depending on which types of organisms one wishes to save. We performed a quantitative review of 266 observations taken from 31 studies that compared the impacts of localized (within farm) management strategies and landscape complexity (around farms) on the richness and abundance of plant, invertebrate and vertebrate species in agro-ecosystems. While both factors significantly impacted species richness, the richness of sessile plants increased with less-intensive local management, but did not significantly respond to landscape complexity. By contrast, the richness of mobile vertebrates increased with landscape complexity, but did not significantly increase with less-intensive local management. Invertebrate richness and abundance responded to both factors. Our analyses point to clear differences in how various groups of organisms respond to differing scales of management, and suggest that preservation of multiple taxonomic groups will require multiple scales of conservation.


Biodiversity and Conservation | 2007

Grassland versus non-grassland bird abundance and diversity in managed grasslands: local, landscape and regional scale effects

Péter Batáry; András Báldi; Sarolta Erdős

Declines of West European farmland birds have been associated with intensive agricultural practices, while in Central and Eastern European countries grasslands still harbour a diverse and unique bird community. However, in these countries comparative studies on the effects of agricultural intensity on biodiversity are virtually missing. We compared bird communities of paired extensively and intensively grazed cattle pastures in three different regions of the Hungarian Great Plain. The influence of grazing intensity, landscape and regional effects were tested on the abundance and species richness of two ecological groups of bird species (grassland and non-grassland birds), as well as on the abundance of the three commonest grassland bird species (Skylark, Yellow wagtail, Corn bunting) in linear mixed models. We found significant effects of grazing intensity on the abundance of grassland birds, which were more abundant on the extensive sites, whereas no effects were found on non-grassland birds. This could be explained by a closer dependence of grassland birds on grasslands for nesting and foraging, whereas non-grassland birds only used grasslands opportunistically for foraging. Landscape effect was shown on grassland bird abundance, but not on non-grassland birds. The regions did affect only the species richness of grassland birds. At species level, the effect of management was significant for the three commonest grassland species, which were more abundant on the extensive fields in all regions. Additionally, on Skylark abundance landscape and regional effects were also shown. These findings suggest that conservation of biodiversity in agricultural systems requires the consideration of landscape perspective to apply the most adequate management.


Journal of Applied Ecology | 2013

Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities

Verena Rösch; Teja Tscharntke; Christoph Scherber; Péter Batáry

Summary Calcareous grasslands are among the most species-rich habitats in Europe, but are increasingly threatened due to abandonment and fragmentation. Little is known about how the surrounding landscape influences fragmentation effects. Here, we focus on the interaction between habitat fragmentation and landscape composition on leafhoppers, a highly diverse group of insects, including many species that are likely to be vulnerable to changes in their environment. We selected 14 small and 14 large fragments of calcareous grassland in Central Germany, differing in isolation from other calcareous grasslands and in composition of the surrounding landscape. Leafhoppers, sampled by sweep netting, were either specialists that depended on calcareous grasslands or generalists that could use the landscape matrix, but still required low-productivity habitats. Increasing habitat isolation reduced leafhopper species richness in simple (dominated by arable crops), but not in complex landscapes. This effect was driven by the generalist species. In simple landscapes, leafhoppers may find it more difficult to reach the next suitable fragment due to a lack of alternative resources during dispersal. Moreover, we found that generalist species richness increased with increasing connectivity on small fragments, whereas it remained stable with increasing connectivity on large fragments. In small, isolated fragments, a higher extinction rate combined with a lower probability of recolonization is thought to cause the reduced species richness. Synthesis and applications. Our results show for the first time that insect species richness can be negatively affected by increasing habitat isolation in simplified but not in complex landscapes and in small but not in large fragments. We provide evidence that mitigating the negative effects of habitat fragmentation needs to take the surrounding landscape into account. Management efforts should prioritize (i) an increase in connectivity of small, isolated fragments, (ii) an increase in connectivity of fragments in simple landscapes and (iii) enhanced dispersal by increasing heterogeneity of both landscape composition and configuration. Moreover, extensive management of fragments by grazing or mowing to increase local habitat quality for leafhoppers would benefit other insect groups as well.


Ecological Applications | 2013

Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales

Anikó Kovács-Hostyánszki; Sebastian Haenke; Péter Batáry; Birgit Jauker; András Báldi; Teja Tscharntke; Andrea Holzschuh

Landscape-wide mass-flowering of oilseed rape (canola Brassica napus) can considerably affect wild bee communities and pollination success of wild plants. We aimed to assess the impact of oilseed rape on the pollination of wild plants and bee abundance during and after oilseed-rape bloom, including effects on crop-noncrop spillover at landscape and adjacent-field scales. We focused on two shrub species (hawthorn Crataegus spp., dog rose Rosa canina) and adjacent herb flowering in forest edges, connected hedges, and isolated hedges in Lower Saxony, Germany. We selected 35 landscape circles of 1 km radius, differing in the amount of oilseed rape; 18 were adjacent to oilseed rape and 17 to cereal fields, and we quantified bee density via pan traps at all sites. Adjacent oilseed rape positively affected fruit mass and seed number per fruit of simultaneously flowering hawthorn (no effect on dog rose, which flowers after the oilseed rape bloom). At the landscape scale, oilseed rape had a negative effect on bumble bee density in the hedges during flowering due to dilution of pollinators per unit area and the consequently intensified competition between oilseed rape and wild shrubs, but a positive effect after flowering when bees moved to the hedges, which still provided resources. In contrast, positive landscape-scale effects of oilseed rape were found throughout the season in forest edges, suggesting that edges support nesting activity and enhanced food resources. Our results show that oilseed rape effects on bee abundances and pollination success in seminatural habitats depend on the spatial and temporal scale considered and on the habitat type, the wild plant species, and the time of crop flowering. These scale-dependent positive and negative effects should be considered in evaluations of landscape-scale configuration and composition of crops. Food resources provided by mass-flowering crops should be most beneficial for landscape-wide enhancement of wild bee populations if seminatural habitats are available, providing (1) nesting resources and (2) continuous flowering resources during the season.


Journal of Applied Ecology | 2014

Landscape configuration of crops and hedgerows drives local syrphid fly abundance

Sebastian Haenke; Anikó Kovács-Hostyánszki; Jochen Fründ; Péter Batáry; Birgit Jauker; Teja Tscharntke; Andrea Holzschuh

Summary 1. Human-dominated landscapes are characterized by a mosaic of natural and managed eco- systems, affecting arthropod communities on different spatial scales. Effective landscape man- agement for functionally important organisms suffers from little understanding of organism spillover between semi-natural habitats and adjacent crops, and of how it is affected by the surrounding landscape. 2. We examined syrphid abundance (Diptera: Syrphidae) in three types of linear semi-natural habitats, differing in connectedness to annual crops and forest [forest edges ( n = 12), forest- connected hedges ( n = 11) and isolated hedges ( n = 12)], as well as in the adjacent oilseed rape or winter wheat fields (i.e. altogether n = 70 sites in 35 landscapes). The landscape cir- cles with 1 km radius around the study sites differed in the proportion of oilseed rape (rang- ing from 0% to 35% oilseed rape) enabling us to test landscape-scale effects of oilseed rape. 3. Aphidophagous syrphids were more abundant in forest-connected hedgerows than in for- est edges (with isolated hedges being intermediate), and more abundant in crop fields adjacent to hedgerows than adjacent to forest edges, indicating spillover from semi-natural habitats to the adjacent crop fields. Aphidophagous syrphid abundance was higher in semi-natural habi- tats adjacent to oilseed rape fields than adjacent to wheat fields if the proportion of oilseed rape in the landscape was low (indicating local concentration). 4. Synthesis and applications. This study highlights the potential of hedgerows to enhance the abundances of beneficial syrphids and their spillover to adjacent crop fields, especially when they are connected with forests. We provide evidence that this local exchange is moderated by the extent of mass-flowering crops in the surrounding landscapes due to local concentration. There- fore, measurements for the improvement in local biological functioni ng should be evaluated by simultaneously investigating local and regio nal aspects of crop configurations to allow for region-specific management recommendations. Increasing the total amount of hedgerows in the agricultural matrix under moderate landscape- scale proportions of mass-flowering crops may serve best for the conservation of biodiversity and augmentation of i mportant ecosystem services such as biological control and pollination in lands capes dominated by agricultural cultivations.


Insect Conservation and Diversity | 2012

Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary

Ádám Kőrösi; Péter Batáry; András Orosz; Dávid Rédei; András Báldi

Abstract.  1. Agricultural intensification is a major cause of biodiversity loss in European farmlands. Grasslands are particularly important habitats for the conservation of rich insect assemblages of Central and Eastern Europe. Although regular grazing or mowing of these grasslands is required to maintain diversity, there is no information about how such management and other factors influence Hemiptera assemblages.

Collaboration


Dive into the Péter Batáry's collaboration.

Researchain Logo
Decentralizing Knowledge