Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Bedner is active.

Publication


Featured researches published by Peter Bedner.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus

Albrecht Kunze; Marga Rubenecia Congreso; Christian Hartmann; Anke Wallraff-Beck; Kerstin Hüttmann; Peter Bedner; Robert Pascal Requardt; Gerald Seifert; Christoph Redecker; Klaus Willecke; Alexander Pfeifer; Martin Theis; Christian Steinhäuser

In the adult dentate gyrus, radial glia-like cells represent putative stem cells generating neurons and glial cells. Here, we combined patch-clamp recordings, biocytin filling, immunohistochemistry, single-cell transcript analysis, and mouse transgenics to test for connexin expression and gap junctional coupling of radial glia-like cells and its impact on neurogenesis. Radial glia-like cells were identified in mice expressing EGFP under control of the nestin and gfap promoters. We show that a majority of Radial glia-like cells are coupled and express Cx43. Neuronal precursors were not coupled. Mice lacking Cx30 and Cx43 in GFAP-positive cells displayed almost complete inhibition of proliferation and a significant decline in numbers of radial glia-like cells and granule neurons. Inducible virus-mediated ablation of connexins in the adult hippocampus also reduced neurogenesis. These findings strongly suggest the requirement of connexin expression by radial glia-like cells for intact neurogenesis in the adult brain and point to possible communication pathways of these cells.


Glia | 2012

Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling

Christian Steinhäuser; Gerald Seifert; Peter Bedner

Astrocytes are endowed with the machinery to sense and respond to neuronal activity. Recent work has demonstrated that astrocytes play important physiological roles in the CNS, e.g., they synchronize action potential firing, ensure ion homeostasis, transmitter clearance and glucose metabolism, and regulate the vascular tone. Astrocytes are abundantly coupled through gap junctions, which is a prerequisite to redistribute elevated K+ from sites of excessive neuronal activity to sites of lower extracellular K+ concentration. Recent studies identified dysfunctional astrocytes as crucial players in epilepsy. Investigation of specimens from patients with pharmacoresistant temporal lobe epilepsy and epilepsy models revealed alterations in expression, localization, and function of astroglial inwardly rectifying K+ (Kir) channels, particularly Kir4.1, which is suspected to entail impaired K+ buffering. Gap junctions in astrocytes appear to play a dual role: on the one hand they counteract the generation of hyperactivity by facilitating clearance of elevated extracellular K+ levels while in contrast, they constitute a pathway for energetic substrate delivery to fuel neuronal (hyper)activity. Recent work suggests that astrocyte dysfunction is causative of the generation or spread of seizure activity. Thus, astrocytes should be considered as promising targets for alternative antiepileptic therapies.


Brain | 2015

Astrocyte uncoupling as a cause of human temporal lobe epilepsy

Peter Bedner; Alexander Dupper; Kerstin Hüttmann; Julia Müller; Michel K. Herde; Pavel Dublin; Tushar Deshpande; Johannes Schramm; Ute Häussler; Carola A. Haas; Christian Henneberger; Martin Theis; Christian Steinhäuser

Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K(+) concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K(+) buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention.


Journal of Biological Chemistry | 2006

Selective Permeability of Different Connexin Channels to the Second Messenger Cyclic AMP

Peter Bedner; Heiner Niessen; Benjamin Odermatt; Markus Kretz; Klaus Willecke; Hartmann Harz

Gap junctions are intercellular conduits that are formed in vertebrates by connexin proteins and allow diffusion exchange of intracellular ions and small molecules. At least 20 different connexin genes in the human and mouse genome are cell-type specifically expressed with overlapping expression patterns. A possible explanation for this diversity could be different permeability of biologically important molecules, such as second messenger molecules. We have recently demonstrated that cyclic nucleotide-gated channels can be used to quantify gap junction-mediated diffusion of cyclic AMP. Using this method we have compared the relative permeability of gap junction channels composed of connexin 26, 32, 36, 43, 45, or 47 proteins toward the second messenger cAMP. Here we show that cAMP permeates through the investigated connexin channels with up to 30-fold different efficacy. Our results suggest that intercellular cAMP signaling in different cell types can be affected by the connexin expression pattern.


Glia | 2011

Role of astroglial connexin30 in hippocampal gap junction coupling

Dominic Gosejacob; Pavel Dublin; Peter Bedner; Kerstin Hüttmann; Jiong Zhang; Oliver Tress; Klaus Willecke; Frank W. Pfrieger; Christian Steinhäuser; Martin Theis

The impact of connexin30 (Cx30) on interastrocytic gap junction coupling in the normal hippocampus is matter of debate; reporter gene analyses indicated a weak expression of Cx30 in the mouse hippocampus. In contrast, mice lacking connexin43 (Cx43) in astrocytes exhibited only 50% reduction in coupling. Complete uncoupling of hippocampal astrocytes in mice lacking both Cx30 and Cx43 suggested that Cx30 participates in interastrocytic gap junction coupling in the hippocampus. With comparative reporter gene assays, immunodetection, and cre/loxP‐based reporter approaches we demonstrate that Cx30 is more abundant than previously thought. The specific role of Cx30 in interastrocytic coupling has never been investigated. Employing tracer coupling analyses in acute slices of Cx30 deficient mice here we show that Cx30 makes a substantial contribution to interastrocytic gap junctional communication in the mouse hippocampus.


Cerebral Cortex | 2015

Characterization of Panglial Gap Junction Networks in the Thalamus, Neocortex, and Hippocampus Reveals a Unique Population of Glial Cells

Stephanie Griemsmann; S. P. Hoft; Peter Bedner; Jiong Zhang; E. von Staden; A. Beinhauer; Joachim Degen; Pavel Dublin; David W. Cope; Nadine Richter; Vincenzo Crunelli; Ronald Jabs; Klaus Willecke; Martin Theis; Gerald Seifert; Helmut Kettenmann; Christian Steinhäuser

The thalamus plays important roles as a relay station for sensory information in the central nervous system (CNS). Although thalamic glial cells participate in this activity, little is known about their properties. In this study, we characterized the formation of coupled networks between astrocytes and oligodendrocytes in the murine ventrobasal thalamus and compared these properties with those in the hippocampus and cortex. Biocytin filling of individual astrocytes or oligodendrocytes revealed large panglial networks in all 3 gray matter regions. Combined analyses of mice with cell type-specific deletion of connexins (Cxs), semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and western blotting showed that Cx30 is the dominant astrocytic Cx in the thalamus. Many thalamic astrocytes even lack expression of Cx43, while in the hippocampus astrocytic coupling is dominated by Cx43. Deletion of Cx30 and Cx47 led to complete loss of panglial coupling, which was restored when one allele of either Cxs was present. Immunohistochemistry revealed a unique antigen profile of thalamic glia and identified an intermediate cell type expressing both Olig2 and Cx43. Our findings further the emerging concept of glial heterogeneity across brain regions.


Biochimica et Biophysica Acta | 2012

Functional redundancy and compensation among members of gap junction protein families

Peter Bedner; Christian Steinhäuser; Martin Theis

Gap junctions are intercellular conduits for small molecules made up by protein subunits called connexins. A large number of connexin genes were found in mouse and man, and most cell types express several connexins, lending support to the view that redundancy and compensation among family members exist. This review gives an overview of the current knowledge on redundancy and functional compensation - or lack thereof. It takes into account the different properties of connexin subunits which comprise gap junctional intercellular channels, but also the compatibility of connexins in gap junctions. Most insight has been gained by the investigation of mice deficient for one or more connexins and transgenic mice with functional replacement of one connexin gene by another. Most single deficient mice show phenotypical alterations limited to critical developmental time points or to specific organs and tissues, while mice doubly deficient for connexins expressed in the same cell type usually show more severe phenotypical alterations. Replacement of a connexin by another connexin in some cases gave rise to rescue of phenotypical alterations of connexin deficiencies, which were restricted to specific tissues. In many tissues, connexin substitution did not restore phenotypical alterations of connexin deficiencies, indicating that connexins are specialized in function. In some cases, fatal consequences arose from the replacement. The current consensus gained from such studies is that redundancy and compensation among connexins exists at least to a limited extent. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.


Epilepsia | 2012

Albumin is taken up by hippocampal NG2 cells and astrocytes and decreases gap junction coupling.

Oliver Braganza; Peter Bedner; Kerstin Hüttmann; Elena von Staden; Alon Friedman; Gerald Seifert; Christian Steinhäuser

Purpose:  Dysfunction of the blood–brain barrier (BBB) and albumin extravasation have been suggested to play a role in the etiology of human epilepsy. In this context, dysfunction of glial cells attracts increasing attention. Our study was aimed to analyze in the hippocampus (1) which cell types internalize albumin injected into the lateral ventricle in vivo, (2) whether internalization into astrocytes impacts their coupling and expression of connexin 43 (Cx43), and (3) whether expression of Kir4.1, the predominating astrocytic K+ channel subunit, is altered by albumin.


Neurochemistry International | 2013

Altered Kir and gap junction channels in temporal lobe epilepsy

Peter Bedner; Christian Steinhäuser

Since astrocytes may sense and respond to neuronal activity these cells are now considered important players in brain signaling. Astrocytes form large gap junction coupled syncytia allowing them to clear the extracellular space from K⁺ and neurotransmitters accumulating during neuronal activity, and redistribute it to sites of lower extracellular concentrations. Increasing evidence suggests a crucial role for dysfunctional astrocytes in the etiology of epilepsy. Notably, alterations in expression, localization and function of astroglial K⁺ channels as well as impaired K⁺ buffering was observed in specimens from patients with pharmacoresistant temporal lobe epilepsy and in chronic epilepsy models. Altered astroglial gap junction coupling has also been reported in epileptic tissue which, however, seems to play a dual role: (i) junctional coupling counteracts hyperactivity by facilitating clearance of elevated extracellular K⁺ and glutamate while (ii) it also provides a pathway for energetic substrates and fuels neuronal activity. Dysfunctional astrocytes should be considered promising targets for new therapeutic strategies.


European Journal of Neuroscience | 2004

Spatiotemporal properties of cytoplasmic cyclic AMP gradients can alter the turning behaviour of neuronal growth cones.

Sebastian Munck; Peter Bedner; Thierry Bottaro; Hartmann Harz

Growth cones, the terminal structures of elongating neurites, use extracellular guidance information in order to navigate to appropriate target cells. The directional information of guidance cues is transduced to a cytoplasmic gradient of messenger molecules across the growth cone leading to rearrangements of the cytoskeleton. One messenger molecule regulating growth cone turning is cAMP, which is also known to be sufficient to direct growth cone attraction. Cytoplasmic cAMP gradients have been generated in the present study by photolysing caged cAMP with UV light focused on one side of growth cones of chick sensory neurons. Using this method we show that only specific time patterns of pulsed cAMP release are capable of inducing growth cone turning whereas others, which release the same amount of cAMP, are ineffective. Theoretical calculations show that diverse time patterns produce different intracellular gradients, which were visualized directly in HeLa cells expressing cAMP‐sensitive ion channels as a reporter system. Together these data indicate that the spatiotemporal properties of the intracellular gradient are crucial for growth cone turning.

Collaboration


Dive into the Peter Bedner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge