Peter Blaesse
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Blaesse.
Neuron | 2009
Peter Blaesse; Matti S. Airaksinen; Claudio Rivera; Kai Kaila
Recent years have witnessed a steep increase in studies on the diverse roles of neuronal cation-chloride cotransporters (CCCs). The versatility of CCC gene transcription, posttranslational modification, and trafficking are on par with what is known about ion channels. The cell-specific and subcellular expression patterns of different CCC isoforms have a key role in modifying a neurons electrophysiological phenotype during development, synaptic plasticity, and disease. While having a major role in controlling responses mediated by GABA(A) and glycine receptors, CCCs also show close interactions with glutamatergic signaling. A cross-talk among CCCs and trophic factors is important in short-term and long-term modification of neuronal properties. CCCs appear to be multifunctional proteins that are also involved in shaping neuronal structure at various stages of development, from stem cells to synaptogenesis. The rapidly expanding work on CCCs promotes our understanding of fundamental mechanisms that control brain development and functions under normal and pathophysiological conditions.
The Journal of Neuroscience | 2006
Peter Blaesse; Isabelle Guillemin; Jens Schindler; Michaela Schweizer; Eric Delpire; Leonard Khiroug; Eckhard Friauf; Hans Gerd Nothwang
The neuron-specific K+–Cl− cotransporter KCC2 extrudes Cl− and renders GABA and glycine action hyperpolarizing. Thus, it plays a pivotal role in neuronal inhibition. Development-dependent KCC2 activation is regulated at the transcriptional level and by unknown posttranslational mechanisms. Here, we analyzed KCC2 activation at the protein level in the developing rat lateral superior olive (LSO), a prominent auditory brainstem structure. Electrophysiology demonstrated ineffective KCC2-mediated Cl− extrusion in LSO neurons at postnatal day 3 (P3). Immunohistochemical analyses by confocal and electron microscopy revealed KCC2 signals at the plasma membrane in the somata and dendrites of both immature and mature neurons. Biochemical analysis demonstrated mature glycosylation pattern of KCC2 at both stages. Immunoblot analysis of the immature brainstem demonstrated mainly monomeric KCC2. In contrast, three KCC2 oligomers with molecular masses of ∼270, ∼400, and ∼500 kDa were identified in the mature brainstem. These oligomers were sensitive to sulfhydryl-reducing agents and resistant to SDS, contrary to the situation seen in the related Na+–(K+)–Cl− cotransporter. In HEK-293 cells, coexpressed hemagglutinin-tagged KCC2 assembled with histidine-tagged KCC2, demonstrating formation of homomers. Based on these findings, we conclude that the oligomers represent KCC2 dimers, trimers, and tetramers. Finally, immunoblot analysis identified a development-dependent increase in the oligomer/monomer ratio from embryonic day 18 to P30 throughout the brain that correlates with KCC2 activation. Together, our data indicate that the developmental shift from depolarization to hyperpolarization can be determined by both increased gene expression and KCC2 oligomerization.
Neuron | 2007
Hong Li; Stanislav Khirug; Chunlin Cai; Anastasia Ludwig; Peter Blaesse; Julia Kolikova; Ramil Afzalov; Sarah K. Coleman; Sari E. Lauri; Matti S. Airaksinen; Kari Keinänen; Leonard Khiroug; Mart Saarma; Kai Kaila; Claudio Rivera
The neuron-specific K-Cl cotransporter, KCC2, induces a developmental shift to render GABAergic transmission from depolarizing to hyperpolarizing. Now we demonstrate that KCC2, independently of its Cl(-) transport function, is a key factor in the maturation of dendritic spines. This morphogenic role of KCC2 in the development of excitatory synapses is mediated by structural interactions between KCC2 and the spine cytoskeleton. Here, the binding of KCC2 C-terminal domain to the cytoskeleton-associated protein 4.1N may play an important role. A more general conclusion based on our data is that KCC2 acts as a synchronizing factor in the functional development of glutamatergic and GABAergic synapses in cortical neurons and networks.
The Journal of Neuroscience | 2010
Stanislav Khirug; Faraz Ahmad; Martin Puskarjov; Ramil Afzalov; Kai Kaila; Peter Blaesse
Functional expression of the K-Cl cotransporter KCC2 in developing central neurons is crucial for the maturation of Cl−-dependent, GABAA receptor-mediated inhibitory responses. In pyramidal neurons of the rodent hippocampus, GABAergic postsynaptic responses are typically depolarizing and often excitatory during the first postnatal week. Here, we show that a single neonatal seizure episode induced by kainate injection during postnatal days 5–7 results in a fast increase in the Cl− extrusion capacity of rat hippocampal CA1 neurons, with a consequent hyperpolarizing shift of the reversal potential of GABAA-mediated currents (EGABA). A significant increase in the surface expression of KCC2 as well as the α2 subunit of the Na-K-ATPase parallels the seizure-induced increase in the Cl− extrusion capacity. Exposing hippocampal slices to kainate resulted in a similar increase in the neuronal Cl− extrusion and in the surface expression of KCC2. Both effects were blocked by the kinase inhibitor K252a. Hence, in the neonatal hippocampus the overall KCC2 expression level is high enough to promote a rapid functional activation of K-Cl cotransport and a consequent negative shift in EGABA close to the adult level. The activity-dependent regulation of KCC2 function and its effect on GABAergic transmission may represent an intrinsic antiepileptogenic mechanism.
The Journal of Neuroscience | 2012
Martin Puskarjov; Faraz Ahmad; Kai Kaila; Peter Blaesse
The K-Cl cotransporter KCC2 plays a crucial role in neuronal chloride regulation. In mature central neurons, KCC2 is responsible for the low intracellular Cl− concentration ([Cl−]i) that forms the basis for hyperpolarizing GABAA receptor-mediated responses. Fast changes in KCC2 function and expression have been observed under various physiological and pathophysiological conditions. Here, we show that the application of protein synthesis inhibitors cycloheximide and emetine to acute rat hippocampal slices have no effect on total KCC2 protein level and K-Cl cotransporter function. Furthermore, blocking constitutive lysosomal degradation with leupeptin did not induce significant changes in KCC2 protein levels. These findings indicate a low basal turnover rate of the total KCC2 protein pool. In the presence of the glutamate receptor agonist NMDA, the total KCC2 protein level decreased to about 30% within 4 h, and this effect was blocked by calpeptin and MDL-28170, inhibitors of the calcium-activated protease calpain. Interictal-like activity induced by incubation of hippocampal slices in an Mg2+-free solution led to a fast reduction in KCC2-mediated Cl− transport efficacy in CA1 pyramidal neurons, which was paralleled by a decrease in both total and plasmalemmal KCC2 protein. These effects were blocked by the calpain inhibitor MDL-28170. Taken together, these findings show that calpain activation leads to cleavage of KCC2, thereby modulating GABAergic signaling.
EMBO Reports | 2014
Martin Puskarjov; Sarah E. Heron; Tristiana C. Williams; Faraz Ahmad; Xenia Iona; Karen L. Oliver; Bronwyn E. Grinton; Laszlo Vutskits; Ingrid E. Scheffer; Steven Petrou; Peter Blaesse; Leanne M. Dibbens; Samuel F. Berkovic; Kai Kaila
Genetic variation in SLC12A5 which encodes KCC2, the neuron‐specific cation‐chloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a co‐segregating variant (KCC2‐R952H) in an Australian family with febrile seizures. We show that KCC2‐R952H reduces neuronal Cl− extrusion and has a compromised ability to induce dendritic spines in vivo and in vitro. Biochemical analyses indicate a reduced surface expression of KCC2‐R952H which likely contributes to the functional deficits. Our data suggest that KCC2‐R952H is a bona fide susceptibility variant for febrile seizures.
Cell and Tissue Research | 2005
Peter Blaesse; Sascha Ehrhardt; Eckhard Friauf; Hans Gerd Nothwang
Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have been identified so far, which are differentially expressed in the brain. Here, we have investigated the spatiotemporal distribution of the three VGLUTs in the rat superior olivary complex (SOC), a prominent processing center, which receives strong glutamatergic inputs and which lies within the auditory brainstem. Immunoreactivity (ir) against all three VGLUTs was found in the SOC nuclei throughout development (postnatal days P0–P60). It was predominantly seen in axon terminals, although cytoplasmic labeling also occurred. Each transporter displayed a characteristic expression pattern. In the adult SOC, VGLUT1 labeling varied from strong in the medial nucleus of the trapezoid body, lateral superior olive, and medial superior olive (MSO) to moderate (ventral and lateral nuclei of the trapezoid body) to faint (superior paraolivary nucleus). VGLUT2-ir was moderate to strong throughout the SOC, whereas VGLUT3 was only weakly expressed. These results extend previous reports on co-localization of VGLUTs in the auditory brainstem. As in the adult, specific features were seen during development for all three transporters. Intensity increases and decreases occurred with both VGLUT1 and VGLUT3, whereas VGLUT2-ir remained moderately high throughout development. A striking result was obtained with VGLUT3, which was only transiently expressed in the different SOC nuclei between P0 and P12. A transient occurrence of VGLUT1-immunoreactive terminals on somata of MSO neurons was another striking finding. Our results imply a considerable amount of synaptic reorganization in the glutamatergic inputs to the SOC and suggest differential roles of VGLUTs during maturation and in adulthood.
Cerebral Cortex | 2013
Hubert Fiumelli; Adrian Briner; Martin Puskarjov; Peter Blaesse; Bebyanda John Thierry Belem; Alexandre Dayer; Kai Kaila; Jean-Luc Martin; Laszlo Vutskits
The neuron-specific K-Cl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in pyramidal neurons, and recent in vitro data suggest that this protein plays a role in the development of dendritic spines. The in vivo relevance of these observations is, however, unknown. Using in utero electroporation combined with post hoc iontophoretic injection of Lucifer Yellow, we show that premature expression of KCC2 induces a highly significant and permanent increase in dendritic spine density of layer 2/3 pyramidal neurons in the somatosensory cortex. Whole-cell recordings revealed that this increased spine density is correlated with an enhanced spontaneous excitatory activity in KCC2-transfected neurons. Precocious expression of the N-terminal deleted form of KCC2, which lacks the chloride transporter function, also increased spine density. In contrast, no effect on spine density was observed following in utero electroporation of a point mutant of KCC2 (KCC2-C568A) where both the cotransporter function and the interaction with the cytoskeleton are disrupted. Transfection of the C-terminal domain of KCC2, a region involved in the interaction with the dendritic cytoskeleton, also increased spine density. Collectively, these results demonstrate a role for KCC2 in excitatory synaptogenesis in vivo through a mechanism that is independent of its ion transport function.
The Journal of Neuroscience | 2009
Sampsa T. Sipilä; Kristiina Huttu; Junko Yamada; Ramil Afzalov; Juha Voipio; Peter Blaesse; Kai Kaila
Depolarizing and excitatory GABA actions are thought to be important in cortical development. We show here that GABA has no excitatory action on CA3 pyramidal neurons in hippocampal slices from neonatal NKCC1−/− mice that lack the Na–K–2Cl cotransporter isoform 1. Strikingly, NKCC1−/− slices generated endogenous network events similar to giant depolarizing potentials (GDPs), but, unlike in wild-type slices, the GDPs were not facilitated by the GABAA agonist isoguvacine or blocked by the NKCC1 inhibitor bumetanide. The developmental upregulation of the K–Cl cotransporter 2 (KCC2) was unperturbed, whereas the pharmacologically isolated glutamatergic network activity and the intrinsic excitability of CA3 pyramidal neurons were enhanced in the NKCC1−/− hippocampus. Hence, developmental expression of KCC2, unsilencing of AMPA-type synapses, and early network events can take place in the absence of excitatory GABAergic signaling in the neonatal hippocampus. Furthermore, we show that genetic as well as pharmacologically induced loss of NKCC1-dependent excitatory actions of GABA results in a dramatic compensatory increase in the intrinsic excitability of glutamatergic neurons, pointing to powerful homeostatic regulation of neuronal activity in the developing hippocampal circuitry.
European Journal of Neuroscience | 2010
Zachi Horn; Thomas Ringstedt; Peter Blaesse; Kai Kaila; Eric Herlenius
During neuronal maturation, the neuron‐specific K–Cl co‐transporter KCC2 lowers the intracellular chloride and thereby renders GABAergic transmission hyperpolarizing. Independently of its role as a co‐transporter, KCC2 plays a crucial role in the maturation of dendritic spines, most probably via an interaction with the cytoskeleton‐associated protein 4.1N. In this study, we show that neural‐specific overexpression of KCC2 impairs the development of the neural tube‐ and neural crest‐related structures in mouse embryos. At early stages (E9.5–11.5), the transgenic embryos had a thinner neural tube and abnormal body curvature. They displayed a reduced neuronal differentiation and altered neural crest cell pattern. At later stages (E11.5–15.5), the transgenic embryos had smaller brain structures and a distinctive cleft palate. Similar results were obtained using overexpression of a transport‐inactive N‐terminal‐deleted variant of KCC2, implying that the effects were not dependent on KCC2′s role as a K–Cl co‐transporter. Interestingly, the neural tube of transgenic embryos had an aberrant cytoplasmic distribution of 4.1N and actin. This was corroborated in a neural stem cell line with ectopic expression of KCC2. Embryo phenotype and cell morphology were unaffected by a mutated variant of KCC2 which is unable to bind 4.1N. These results point to a role of KCC2 in neuronal differentiation and migration during early development mediated by its direct structural interactions with the neuronal cytoskeleton.