Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter C. Appelbaum is active.

Publication


Featured researches published by Peter C. Appelbaum.


International Journal of Antimicrobial Agents | 2000

The fluoroquinolone antibacterials: past, present and future perspectives

Peter C. Appelbaum; P.A. Hunter

The history of the development of the quinolones is described from the first quinolone, nalidixic acid, via the first 6-fluorinated quinolone norfloxacin, to the latest extended-spectrum fluoroquinolones. The structural modifications made to the basic quinolone and naphthyridone nucleus and to the side chains have allowed improvements to be made such that the next group of fluoroquinolones after norfloxacin, exemplified by ciprofloxacin, had high activity against gram-negative species and a number of atypical pathogens, good-to-moderate activity against gram-positive species and were well absorbed and distributed. These compounds have been successfully used in the clinic for a decade and the size of the market has risen in recent years to only a little less than that for penicillins and macrolides. Notwithstanding the broad spectrum of these compounds, defects became evident. The growth in understanding of structure activity relationships with fluoroquinolones has enabled the development of even better compounds. The targets in fluoroquinolone research during the last few years include: improvements in pharmacokinetic properties, greater activity against gram-positive cocci and anaerobes, activity against fluoroquinolone-resistant strains, and improvements in activity against non-fermentative gram-negative species. The compounds developed in the recent years have fulfilled some but not all of these goals; improved bioavailability is one target achieved with most of the more recent compounds allowing for once-daily dosing. Gatifloxacin, moxifoxacin and trovafloxacin have all greatly improved the activity against gram-positive cocci, particularly pneumococci, and against anaerobes. They are not quite as active as ciprofloxacin against Enterobacteriaceae, and show no substantial improvements in activity against non-fermentative species. Clinafloxacin, gemifloxacin and sitafloxacin have even better activity against gram-positive cocci and are as active as ciprofloxacin against most gram-negatives, though gemifloxacin is less active than the other new compounds against gram-negative anaerobes. These three compounds do retain some activity against a number of ciprofloxacin-resistant species (gram-positive and gram-negative), but whether this activity will be adequate for clinical use is at present unclear. Both clinafloxacin and sitafloxacin contain a chloro substituent at position 8 of the quinolone nucleus. A halogen at this position in a number of compounds, though giving good activity, has also been associated with phototoxicity. Several fluoroquinolones have had to be withdrawn or strictly limited in their use post-marketing and in some cases no obvious relationship can be seen between the adverse effects and structural features, making this an area for urgent research.


Antimicrobial Agents and Chemotherapy | 2004

Vancomycin-Resistant Staphylococcus aureus Isolate from a Patient in Pennsylvania

Fred C. Tenover; Linda M. Weigel; Peter C. Appelbaum; Linda K. McDougal; Jasmine Chaitram; Sigrid K. McAllister; Nancye C. Clark; George Killgore; Caroline M. O'Hara; Laura A. Jevitt; Jean B. Patel; Bülent Bozdogan

ABSTRACT A vancomycin-resistant Staphylococcus aureus (VRSA) isolate was obtained from a patient in Pennsylvania in September 2002. Species identification was confirmed by standard biochemical tests and analysis of 16S ribosomal DNA, gyrA, and gyrB sequences; all of the results were consistent with the S. aureus identification. The MICs of a variety of antimicrobial agents were determined by broth microdilution and macrodilution methods following National Committee for Clinical Laboratory Standards (NCCLS) guidelines. The isolate was resistant to vancomycin (MIC = 32 μg/ml), aminoglycosides, β-lactams, fluoroquinolones, macrolides, and tetracycline, but it was susceptible to linezolid, minocycline, quinupristin-dalfopristin, rifampin, teicoplanin, and trimethoprim-sulfamethoxazole. The isolate, which was originally detected by using disk diffusion and a vancomycin agar screen plate, was vancomycin susceptible by automated susceptibility testing methods. Pulsed-field gel electrophoresis (PFGE) of SmaI-digested genomic DNA indicated that the isolate belonged to the USA100 lineage (also known as the New York/Japan clone), the most common staphylococcal PFGE type found in hospitals in the United States. The VRSA isolate contained two plasmids of 120 and 4 kb and was positive for mecA and vanA by PCR amplification. The vanA sequence was identical to the vanA sequence present in Tn1546. A DNA probe for vanA hybridized to the 120-kb plasmid. This is the second VRSA isolate reported in the United States.


The Lancet | 1977

Streptococcus pneumoniae resistant to penicillin and chloramphenicol.

Peter C. Appelbaum; Joan N. Scragg; AnnetteJ. Bowen; A. Bhamjee; Hallett Af; RosemaryC. Cooper

Three cases of meningitis and two of septicaemia were caused by pneumococci resistant to the penicillins/cephalosporins and chloramphenicol. No beta-lactamase was demonstrated in any of the organisms. All three patients with meningitis died, but the patients with septicaemia recovered after being given appropriate antibiotic therapy.


Antimicrobial Agents and Chemotherapy | 2000

Mutations in 23S rRNA and Ribosomal Protein L4 Account for Resistance in Pneumococcal Strains Selected In Vitro by Macrolide Passage

Amelia Tait-Kamradt; Todd A. Davies; M. Cronan; Michael R. Jacobs; Peter C. Appelbaum; Joyce A. Sutcliffe

ABSTRACT The mechanisms responsible for macrolide resistance inStreptococcus pneumoniae mutants, selected from susceptible strains by serial passage in azithromycin, were investigated. These mutants were resistant to 14- and 15-membered macrolides, but resistance could not be explained by any clinically relevant resistance determinant [mef(A),erm(A), erm(B), erm(C),erm(TR), msr(A), mph(A),mph(B), mph(C), ere(A),ere(B)]. An investigation into the sequences of 23S rRNAs in the mutant and parental strains revealed individual changes of C2611A, C2611G, A2058G, and A2059G (Escherichia colinumbering) in four mutants. Mutations at these residues in domain V of 23S rRNA have been noted to confer erythromycin resistance in other species. Not all four 23S rRNA alleles have to contain the mutation to confer resistance. Some of the mutations also confer coresistance to streptogramin B (C2611A, C2611G, and A2058G), 16-membered macrolides (all changes), and clindamycin (A2058G and A2059G). Interestingly, none of these mutations confer high-level resistance to telithromycin (HMR-3647). Further, two of the mutants which had no changes in their 23S rRNA sequences had changes in a highly conserved stretch of amino acids (63KPWRQKGTGRAR74) in ribosomal protein L4. One mutant contained a single amino acid change (G69C), while the other mutant had a 6-base insert, resulting in two amino acids (S and Q) being inserted between amino acids Q67 and K68. To our knowledge, this is the first description of mutations in 23S rRNA genes or ribosomal proteins in macrolide-resistant S. pneumoniae strains.


Clinical Infectious Diseases | 1999

Spread of Drug-Resistant Streptococcus pneumoniae in Asian Countries: Asian Network for Surveillance of Resistant Pathogens (ANSORP) Study

Jae-Hoon Song; Nam Yong Lee; Satoshi Ichiyama; Ryoji Yoshida; Yoichi Hirakata; Wang Fu; Anan Chongthaleong; Nalinee Aswapokee; Cheng-Hsun Chiu; M. K. Lalitha; Kurien Thomas; Jennifer Perera; Ti Teow Yee; Farida Jamal; Usman Chatib Warsa; Bui Xuan Vinh; Michael R. Jacobs; Peter C. Appelbaum; Chik Hyun Pai

Antimicrobial susceptibility of 996 isolates of Streptococcus pneumoniae from clinical specimens was investigated in 11 Asian countries from September 1996 to June 1997. Korea had the greatest frequency of nonsusceptible strains to penicillin with 79.7%, followed by Japan (65.3%), Vietnam (60.8%), Thailand (57.9%), Sri Lanka (41.2%), Taiwan (38.7%), Singapore (23.1%), Indonesia (21.0%), China (9.8%), Malaysia (9.0%), and India (3.8%). Serotypes 23F and 19F were the most common. Pulsed-field gel electrophoresis (PFGE) of 154 isolates from Asian countries showed several major PFGE patterns. The serotype 23F Spanish clone shared the same PFGE pattern with strains from Korea, Japan, Singapore, Taiwan, Thailand, and Malaysia. Fingerprinting analysis of pbp1a, pbp2x, and pbp2b genes of 12 strains from six countries also showed identical fingerprints of penicillin-binding protein genes in most strains. These data suggest the possible introduction and spread of international epidemic clones into Asian countries and the increasing problems of pneumococcal drug resistance in Asian countries for the first time.


Clinical Microbiology Reviews | 2007

Antimicrobial Resistance in Haemophilus influenzae

Sg Tristram; Michael R. Jacobs; Peter C. Appelbaum

SUMMARY Haemophilus influenzae is a major community-acquired pathogen causing significant morbidity and mortality worldwide. Meningitis and bacteremia due to type b strains occur in areas where the protein-conjugated type b vaccine is not in use, whereas nontypeable strains are major causes of otitis media, sinusitis, acute exacerbations of chronic bronchitis, and pneumonia. Antibiotic resistance in this organism is more diverse and widespread than is commonly appreciated. Intrinsic efflux resistance mechanisms limit the activity of the macrolides, azalides, and ketolides. β-Lactamase production is highly prevalent worldwide and is associated with resistance to ampicillin and amoxicillin. Strains with alterations in penicillin binding proteins, particularly PBP3 (β-lactamase negative ampicillin resistant and β-lactamase positive amoxicillin-clavulanate resistant), are increasing in prevalence, particularly in Japan, with increasing resistance to ampicillin, amoxicillin, amoxicillin-clavulanate, and many cephalosporins, limiting the efficacy of expanded-spectrum cephalosporins against meningitis and of many oral cephalosporins against other diseases. Most strains remain susceptible to the carbapenems, which are not affected by penicillin binding protein changes, and the quinolones. The activity of many oral agents is limited by pharmacokinetics achieved with administration by this route, and the susceptibility of isolates based on pharmacokinetic and pharmacodynamic parameters is reviewed.


Antimicrobial Agents and Chemotherapy | 2000

Two New Mechanisms of Macrolide Resistance in Clinical Strains of Streptococcus pneumoniae from Eastern Europe and North America

Amelia Tait-Kamradt; Todd A. Davies; Peter C. Appelbaum; F. Depardieu; P. Courvalin; J. Petitpas; L. Wondrack; A. Walker; Michael R. Jacobs; Joyce A. Sutcliffe

ABSTRACT Resistance to macrolides in pneumococci is generally mediated by methylation of 23S rRNA via erm(B) methylase which can confer a macrolide (M)-, lincosamide (L)-, and streptogramin B (SB)-resistant (MLSB) phenotype or by drug efflux via mef(A) which confers resistance to 14- and 15-membered macrolides only. We studied 20 strains with unusual ML or MSB phenotypes which did not harbor erm(B) ormef(A). The strains had been isolated from patients in Eastern Europe and North America from 1992 to 1998. These isolates were found to contain mutations in genes for either 23S rRNA or ribosomal proteins. Three strains from the United States with an ML phenotype, each representing a different clone, were characterized as having an A2059G (Escherichia coli numbering) change in three of the four 23S rRNA alleles. Susceptibility to macrolides and lincosamides decreased as the number of alleles in isogenic strains containing A2059G increased. Sixteen MSB strains from Eastern Europe were found to contain a 3-amino-acid substitution (69GTG71 to TPS) in a highly conserved region of the ribosomal protein L4 (63KPWRQKGTGRAR74). These strains formed several distinct clonal types. The single MSB strain from Canada contained a 6-amino-acid L4 insertion (69GTGREKGTGRAR), which impacted growth rate and also conferred a 500-fold increase in MIC on the ketolide telithromycin. These macrolide resistance mechanisms from clinical isolates are similar to those recently described for laboratory-derived mutants.


Clinical Infectious Diseases | 2002

Resistance among Streptococcus pneumoniae: Implications for Drug Selection

Peter C. Appelbaum

Streptococcus pneumoniae is an important pathogen in many community-acquired respiratory infections in the United States and a leading cause of morbidity and mortality worldwide. Unfortunately, S. pneumoniae is becoming increasingly resistant to a variety of antibiotics. Results of recent surveillance studies in the United States show that the prevalence of penicillin-nonsusceptible S. pneumoniae ranges from 25% to >50%, and rates of macrolide resistance among pneumococci are reported to be as high as 31%. A high prevalence of resistance to other antimicrobial classes is found among penicillin-resistant strains. Newer quinolones (e.g., gatifloxacin, gemifloxacin, and moxifloxacin) that have better antipneumococcal activity in vitro are the most active agents and therefore are attractive options for treatment of adults with community-acquired respiratory infections. Efforts should be made to prevent pneumococcal infections in high-risk patients through vaccination.


Antimicrobial Agents and Chemotherapy | 2002

Diversity of Ribosomal Mutations Conferring Resistance to Macrolides, Clindamycin, Streptogramin, and Telithromycin in Streptococcus pneumoniae

Annie Canu; Brigitte Malbruny; Maëlle Coquemont; Todd A. Davies; Peter C. Appelbaum; Roland Leclercq

ABSTRACT Mechanisms of resistance were studied in 22 macrolide-resistant mutants selected in vitro from 5 parental strains of macrolide-susceptible Streptococcus pneumoniae by serial passage in various macrolides (T. A. Davies, B. E. Dewasse, M. R. Jacobs, and P. C. Appelbaum, Antimicrob. Agents Chemother., 44:414–417, 2000). Portions of genes encoding ribosomal proteins L22 and L4 and 23S rRNA (domains II and V) were amplified by PCR and analyzed by single-strand conformational polymorphism analysis to screen for mutations. The DNA sequences of amplicons from mutants that differed from those of parental strains by their electrophoretic migration profiles were determined. In six mutants, point mutations were detected in the L22 gene (G95D, P99Q, A93E, P91S, and G83E). The only mutant selected by telithromycin (for which the MIC increased from 0.008 to 0.25 μg/ml) contained a combination of three mutations in the L22 gene (A93E, P91S, and G83E). L22 mutations were combined with an L4 mutation (G71R) in one strain and with a 23S rRNA mutation (C2611A) in another strain. Nine other strains selected by various macrolides had A2058G (n = 1), A2058U (n = 2), A2059G (n = 1), C2610U (n = 1), and C2611U (n = 4) mutations (Escherichia coli numbering) in domain V of 23S rRNA. One mutant selected by clarithromycin and resistant to all macrolides tested (MIC, >32 μg/ml) and telithromycin (MIC, 4 μg/ml) had a single base deletion (A752) in domain II. In six remaining mutants, no mutations in L22, L4, or 23S rRNA could be detected.


Antimicrobial Agents and Chemotherapy | 2005

Antimicrobial Susceptibility of Streptococcus pneumoniae in Eight European Countries from 2001 to 2003

Ralf René Reinert; Susanne Reinert; Mark van der Linden; Murat Yücel Cil; Adnan Al-Lahham; Peter C. Appelbaum

ABSTRACT Susceptibility testing results for Streptococcus pneumoniae isolates (n = 2,279) from eight European countries, examined in the PneumoWorld Study from 2001 to 2003, are presented. Overall, 24.6% of S. pneumoniae isolates were nonsusceptible to penicillin G and 28.0% were resistant to macrolides. The prevalence of resistance varied widely between European countries, with the highest rates of penicillin G and macrolide resistance reported from Spain and France. Serotype 14 was the leading serotype among penicillin G- and macrolide-resistant S. pneumoniae isolates. One strain (PW 158) showed a combination of an efflux type of resistance with a 23S rRNA mutation (A2061G, pneumococcal numbering; A2059G, Escherichia coli numbering). Six strains which showed negative results for mef(A) and erm(B) in repeated PCR assays had mutations in 23S rRNA or alterations in the L4 ribosomal protein (two strains). Fluoroquinolone resistance rates (levofloxacin MIC ≥ 4 μg/ml) were low (Austria, 0%; Belgium, 0.7%; France, 0.9%; Germany, 0.4%; Italy, 1.3%; Portugal, 1.2%; Spain, 1.0%; and Switzerland, 0%). Analysis of quinolone resistance-determining regions showed eight strains with a Ser81 alteration in gyrA; 13 of 18 strains showed a Ser79 alteration in parC. The clonal profile, as analyzed by multilocus sequence typing (MLST), showed that the 18 fluoroquinolone-resistant strains were genetically heterogeneous. Seven of the 18 strains belonged to new sequence types not hitherto described in the MLST database. Europe-wide surveillance for monitoring of the further spread of these antibiotic-resistant S. pneumoniae clones is warranted.

Collaboration


Dive into the Peter C. Appelbaum's collaboration.

Top Co-Authors

Avatar

Michael R. Jacobs

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Glenn A. Pankuch

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lois M. Ednie

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

S K Spangler

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gengrong Lin

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaudia Kosowska-Shick

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Todd A. Davies

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kim Credito

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Catherine Clark

Penn State Milton S. Hershey Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge