Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter C. Cook is active.

Publication


Featured researches published by Peter C. Cook.


Science | 2011

Local Macrophage Proliferation, Rather than Recruitment from the Blood, Is a Signature of TH2 Inflammation

Stephen J. Jenkins; Dominik Rückerl; Peter C. Cook; Lucy H. Jones; Fred D. Finkelman; Nico van Rooijen; Andrew S. MacDonald; Judith E. Allen

Proliferation in situ, rather than immune cell recruitment, drives macrophage expansion in response to parasitic infection. A defining feature of inflammation is the accumulation of innate immune cells in the tissue that are thought to be recruited from the blood. We reveal that a distinct process exists in which tissue macrophages undergo rapid in situ proliferation in order to increase population density. This inflammatory mechanism occurred during T helper 2 (TH2)–related pathologies under the control of the archetypal TH2 cytokine interleukin-4 (IL-4) and was a fundamental component of TH2 inflammation because exogenous IL-4 was sufficient to drive accumulation of tissue macrophages through self-renewal. Thus, expansion of innate cells necessary for pathogen control or wound repair can occur without recruitment of potentially tissue-destructive inflammatory cells.


Journal of Experimental Medicine | 2010

CD11c depletion severely disrupts Th2 induction and development in vivo.

Alexander T. Phythian-Adams; Peter C. Cook; Rachel J. Lundie; Lucy H. Jones; Katherine A. Smith; Tom A. Barr; Kristin Hochweller; Stephen M. Anderton; Günter J. Hämmerling; Rick M. Maizels; Andrew S. MacDonald

Although dendritic cells (DCs) are adept initiators of CD4+ T cell responses, their fundamental importance in this regard in Th2 settings remains to be demonstrated. We have used CD11c–diphtheria toxin (DTx) receptor mice to deplete CD11c+ cells during the priming stage of the CD4+ Th2 response against the parasitic helminth Schistosoma mansoni. DTx treatment significantly depleted CD11c+ DCs from all tissues tested, with 70–80% efficacy. Even this incomplete depletion resulted in dramatically impaired CD4+ T cell production of Th2 cytokines, altering the balance of the immune response and causing a shift toward IFN-γ production. In contrast, basophil depletion using Mar-1 antibody had no measurable effect on Th2 induction in this system. These data underline the vital role that CD11c+ antigen-presenting cells can play in orchestrating Th2 development against helminth infection in vivo, a response that is ordinarily balanced so as to prevent the potentially damaging production of inflammatory cytokines.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo

Peter C. Cook; Lucy H. Jones; Stephen J. Jenkins; Thomas A. Wynn; Judith E. Allen; Andrew S. MacDonald

Interleukin-4 is a cytokine widely known for its role in CD4+ T cell polarization and its ability to alternatively activate macrophage populations. In contrast, the impact of IL-4 on the activation and function of dendritic cells (DCs) is poorly understood. We report here that DCs respond to IL-4 both in vitro and in vivo by expression of multiple alternative activation markers with a different expression pattern to that of macrophages. We further demonstrate a central role for DC IL-4Rα expression in the optimal induction of IFNγ responses in vivo in both Th1 and Th2 settings, through a feedback loop in which IL-4 promotes DC secretion of IL-12. Finally, we reveal a central role for RELMα during T-cell priming, establishing that its expression by DCs is critical for optimal IL-10 and IL-13 promotion in vitro and in vivo. Together, these data highlight the significant impact that IL-4 and RELMα can have on DC activation and function in the context of either bacterial or helminth pathogens.


PLOS Neglected Tropical Diseases | 2011

CD4+CD25+ regulatory cells contribute to the regulation of colonic Th2 granulomatous pathology caused by schistosome infection

Joseph D. Turner; Gavin R. Jenkins; Karen G. Hogg; Sarah A. Aynsley; Ross A. Paveley; Peter C. Cook; Mark Coles; Adrian P. Mountford

Eggs of the helminth Schistosoma mansoni accumulate in the colon following infection and generate Th2-biassed inflammatory granulomas which become down- modulated in size as the infection proceeds to chronicity. However, although CD4+CD25+FoxP3+regulatory T cells (Tregs) are known to suppress Th1-mediated colitis, it is not clear whether they control Th2 –associated pathologies of the large intestine which characterise several helminth infections. Here we used a novel 3D-multiphoton confocal microscopy approach to visualise and quantify changes in the size and composition of colonic granulomas at the acute and chronic phases of S. mansoni infection. We observed decreased granuloma size, as well as reductions in the abundance of DsRed+ T cells and collagen deposition at 14 weeks (chronic) compared to 8 weeks (acute) post-infection. Th2 cytokine production (i.e. IL-4, IL-5) in the colonic tissue and draining mesenteric lymph node (mLN) decreased during the chronic phase of infection, whilst levels of TGF-β1 increased, co-incident with reduced mLN proliferative responses, granuloma size and fibrosis. The proportion of CD4+CD25+FoxP3+Tregs: CD4+ cells in the mLN increased during chronic disease, while within colonic granulomas there was an approximate 4-fold increase. The proportion of CD4+CD25+FoxP3+Tregs in the mLN that were CD103+ and CCR5+ also increased indicating an enhanced potential to home to intestinal sites. CD4+CD25+ cells suppressed antigen-specific Th2 mLN cell proliferation in vitro, while their removal during chronic disease resulted in significantly larger granulomas, partial reversal of Th2 hypo-responsiveness and an increase in the number of eosinophils in colonic granulomas. Finally, transfer of schistosome infection-expanded CD4+CD25+Tregs down-modulated the development of colonic granulomas, including collagen deposition. Therefore, CD4+CD25+FoxP3+Tregs appear to control Th2 colonic granulomas during chronic infection, and are likely to play a role in containing pathology during intestinal schistosomiasis.


International Journal for Parasitology | 2011

The Mannose Receptor (CD206) is an important pattern recognition receptor (PRR) in the detection of the infective stage of the helminth Schistosoma mansoni and modulates IFNγ production.

Ross A. Paveley; Sarah A. Aynsley; Joseph D. Turner; Claire D. Bourke; Stephen J. Jenkins; Peter C. Cook; Luisa Martinez-Pomares; Adrian P. Mountford

In this study, infective larvae of the parasitic helminth Schistosoma mansoni were shown to contain a large number of glycosylated components specific for the Mannose Receptor (MR; CD206), which is an important pattern recognition receptor (PRR) of the innate immune system. MR ligands were particularly rich in excretory/secretory (E/S) material released during transformation of cercariae into schistosomula, a process critical for infection of the host. E/S material from carboxyfluorescein diacetate succinimidyl ester (CFDA-SE)-labelled cercariae showed enhanced binding by cells lines that over-express the MR. Conversely, uptake was significantly lower by bone marrow-derived macrophages (MΦ) from MR(-/-) mice, although they were more active as judged by enhanced pro-inflammatory cytokine production and CD40 expression. After natural percutaneous infection of MR(-/-) mice with CFDA-SE-labelled parasites, there were fewer cells in the skin and draining lymph nodes that were CFDA-SE(+) compared with wild-type mice, implying reduced uptake and presentation of larval parasite antigen. However, antigen-specific proliferation of skin draining lymph node cells was significantly enhanced and they secreted markedly elevated levels of IFNγ but decreased levels of IL-4. In conclusion, we show that the MR on mononuclear phagocytic cells, which are plentiful in the skin, plays a significant role in internalising E/S material released by the invasive stages of the parasite which in turn modulates their production of pro-inflammatory cytokines. In the absence of the MR, antigen-specific CD4(+) cells are Th1 biased, suggesting that ligation of the MR by glycosylated E/S material released by schistosome larvae modulates the production of CD4(+) cell specific IFNγ.


PLOS Neglected Tropical Diseases | 2009

Fluorescent imaging of antigen released by a skin-invading helminth reveals differential uptake and activation profiles by antigen presenting cells.

Ross A. Paveley; Sarah A. Aynsley; Peter C. Cook; Joseph D. Turner; Adrian P. Mountford

Infection of the mammalian host by the parasitic helminth Schistosoma mansoni is accompanied by the release of excretory/secretory molecules (ES) from cercariae which aid penetration of the skin. These ES molecules are potent stimulants of innate immune cells leading to activation of acquired immunity. At present however, it is not known which cells take up parasite antigen, nor its intracellular fate. Here, we develop a technique to label live infectious cercariae which permits the imaging of released antigens into macrophages (MΦ) and dendritic cells (DCs) both in vitro and in vivo. The amine reactive tracer CFDA-SE was used to efficiently label the acetabular gland contents of cercariae which are released upon skin penetration. These ES products, termed ‘0-3hRP’, were phagocytosed by MHC-II+ cells in a Ca+ and actin-dependent manner. Imaging of a labelled cercaria as it penetrates the host skin over 2 hours reveals the progressive release of ES material. Recovery of cells from the skin shows that CFDA-SE labelled ES was initially (3 hrs) taken up by Gr1+MHC-II− neutrophils, followed (24 hrs) by skin-derived F4/80+MHC-IIlo MΦ and CD11c+ MHC-IIhi DC. Subsequently (48 hrs), MΦ and DC positive for CFDA-SE were detected in the skin-draining lymph nodes reflecting the time taken for antigen-laden cells to reach sites of immune priming. Comparison of in vitro-derived MΦ and DC revealed that MΦ were slower to process 0-3hRP, released higher quantities of IL-10, and expressed a greater quantity of arginase-1 transcript. Combined, our observations on differential uptake of cercarial ES by MΦ and DC suggest the development of a dynamic but ultimately balanced response that can be potentially pushed towards immune priming (via DC) or immune regulation (via MΦ).


PLOS Pathogens | 2011

Multiple helminth infection of the skin causes lymphocyte hypo-responsiveness mediated by Th2 conditioning of dermal myeloid cells

Peter C. Cook; Sarah A. Aynsley; Joseph D. Turner; Gavin R. Jenkins; Nico van Rooijen; Mosiuoa Leeto; Frank Brombacher; Adrian P. Mountford

Infection of the mammalian host by schistosome larvae occurs via the skin, although nothing is known about the development of immune responses to multiple exposures of schistosome larvae, and/or their excretory/secretory (E/S) products. Here, we show that multiple (4x) exposures, prior to the onset of egg laying by adult worms, modulate the skin immune response and induce CD4+ cell hypo-responsiveness in the draining lymph node, and even modulate the formation of hepatic egg-induced granulomas. Compared to mice exposed to a single infection (1x), dermal cells from multiply infected mice (4x), were less able to support lymph node cell proliferation. Analysis of dermal cells showed that the most abundant in 4x mice were eosinophils (F4/80+MHC-II−), but they did not impact the ability of antigen presenting cells (APC) to support lymphocyte proliferation to parasite antigen in vitro. However, two other cell populations from the dermal site of infection appear to have a critical role. The first comprises arginase-1+, Ym-1+ alternatively activated macrophage-like cells, and the second are functionally compromised MHC-IIhi cells. Through the administration of exogenous IL-12 to multiply infected mice, we show that these suppressive myeloid cell phenotypes form as a consequence of events in the skin, most notably an enrichment of IL-4 and IL-13, likely resulting from an influx of RELMα-expressing eosinophils. We further illustrate that the development of these suppressive dermal cells is dependent upon IL-4Rα signalling. The development of immune hypo-responsiveness to schistosome larvae and their effect on the subsequent response to the immunopathogenic egg is important in appreciating how immune responses to helminth infections are modulated by repeated exposure to the infective early stages of development.


Mucosal Immunology | 2015

The Axl receptor tyrosine kinase is a discriminator of macrophage function in the inflamed lung

Toshifumi Fujimori; Aleksander M Grabiec; Manminder Kaur; Thomas J. Bell; Naoya Fujino; Peter C. Cook; Freya Svedberg; Andrew S. MacDonald; Rose A. Maciewicz; Dave Singh; Tracy Hussell

Much of the biology surrounding macrophage functional specificity has arisen through examining inflammation-induced polarizing signals, but this also occurs in homeostasis, requiring tissue-specific environmental triggers that influence macrophage phenotype and function. The TAM receptor family of receptor tyrosine kinases (Tyro3, Axl and MerTK) mediates the non-inflammatory removal of apoptotic cells by phagocytes through the bridging phosphatidylserine-binding molecules growth arrest-specific 6 (Gas6) or Protein S. We show that one such TAM receptor (Axl) is exclusively expressed on mouse airway macrophages, but not interstitial macrophages and other lung leukocytes, under homeostatic conditions and is constitutively ligated to Gas6. Axl expression is potently induced by granulocyte-macrophage colony-stimulating factor expressed in the healthy and inflamed airway, and by type I interferon or Toll-like receptor-3 stimulation on human and mouse macrophages, indicating potential involvement of Axl in apoptotic cell removal under inflammatory conditions. Indeed, an absence of Axl does not cause sterile inflammation in health, but leads to exaggerated lung inflammatory disease upon influenza infection. These data imply that Axl allows specific identification of airway macrophages, and that its expression is critical for macrophage functional compartmentalization in the airspaces or lung interstitium. We propose that this may be a critical feature to prevent excessive inflammation because of secondary necrosis of apoptotic cells that have not been cleared by efferocytosis.


Nature Communications | 2015

A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells

Peter C. Cook; Heather Owen; Aimée M. Deaton; Jessica G. Borger; Sheila Brown; Thomas Clouaire; Gareth-Rhys Jones; Lucy H. Jones; Rachel J. Lundie; Angela K. Marley; Vicky L. Morrison; Alexander T. Phythian-Adams; Elisabeth Wachter; Lauren M. Webb; Tara E. Sutherland; Graham D. Thomas; John R. Grainger; Jim Selfridge; Andrew N. J. McKenzie; Judith E. Allen; Susanna C. Fagerholm; Rick M. Maizels; Alasdair Ivens; Adrian Bird; Andrew S. MacDonald

Dendritic cells (DCs) direct CD4+ T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4+ T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation.


Nature Communications | 2014

Loss of beta2-integrin-mediated cytoskeletal linkage reprogrammes dendritic cells to a mature migratory phenotype

Vicky L. Morrison; Katarzyna M Grzes; Peter C. Cook; David Gavin Glass; Terhi Savinko; Hwee San Lek; Christian Gawden-Bone; Colin Watts; Owain R. Millington; Andrew S. MacDonald; Susanna C. Fagerholm

The actin cytoskeleton has been reported to restrict signaling in resting immune cells. Beta2-integrins, which mediate adhesion and cytoskeletal organization, are emerging as negative regulators of myeloid cell-mediated immune responses, but the molecular mechanisms involved are poorly understood. Here, we show that loss of the interaction between beta2-integrins and kindlin-3 abolishes the actin-linkage of integrins and the GM-CSF receptor in dendritic cells. This leads to increased GM-CSF receptor/Syk signaling, and to the induction of a transcriptional program characteristic of mature, migratory dendritic cells, accumulation of migratory dendritic cells in lymphoid organs, and increased Th1 immune responses in vivo. We observe increased GM-CSF responses and increased survival in neutrophils where the interaction between integrin and the cytoskeleton is disrupted. Thus, ligand-reinforced beta2-integrin tail interactions restrict cytokine receptor signaling, survival, maturation and migration in myeloid cells and thereby contribute to immune homeostasis in vivo.

Collaboration


Dive into the Peter C. Cook's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanpeng Cao

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge