Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter C. Dedon is active.

Publication


Featured researches published by Peter C. Dedon.


Journal of Clinical Investigation | 2008

DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice

Lisiane B. Meira; James M. Bugni; Stephanie L. Green; Chung-Wei Lee; Bo Pang; Diana Borenshtein; Barry H. Rickman; Arlin B. Rogers; Catherine A. Moroski-Erkul; Jose Luis McFaline; David B. Schauer; Peter C. Dedon; James G. Fox; Leona D. Samson

Chronic inflammation increases cancer risk. While it is clear that cell signaling elicited by inflammatory cytokines promotes tumor development, the impact of DNA damage production resulting from inflammation-associated reactive oxygen and nitrogen species (RONS) on tumor development has not been directly tested. RONS induce DNA damage that can be recognized by alkyladenine DNA glycosylase (Aag) to initiate base excision repair. Using a mouse model of episodic inflammatory bowel disease by repeated administration of dextran sulfate sodium in the drinking water, we show that Aag-mediated DNA repair prevents colonic epithelial damage and reduces the severity of dextran sulfate sodium-induced colon tumorigenesis. Importantly, DNA base lesions expected to be induced by RONS and recognized by Aag accumulated to higher levels in Aag-deficient animals following stimulation of colonic inflammation. Finally, as a test of the generality of this effect we show that Aag-deficient animals display more severe gastric lesions that are precursors of gastric cancer after chronic infection with Helicobacter pylori. These data demonstrate that the repair of DNA lesions formed by RONS during chronic inflammation is important for protection against colon carcinogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage

Tao Jiang; Xinfeng Zhou; Koli Taghizadeh; Min Dong; Peter C. Dedon

The posttranslational modification of histone and other chromatin proteins has a well recognized but poorly defined role in the physiology of gene expression. With implications for interfering with these epigenetic mechanisms, we now report the existence of a relatively abundant secondary modification of chromatin proteins, the N6-formylation of lysine that appears to be uniquely associated with histone and other nuclear proteins. Using both radiolabeling and sensitive bioanalytical methods, we demonstrate that the formyl moiety of 3′-formylphosphate residues arising from 5′-oxidation of deoxyribose in DNA, caused by the enediyne neocarzinostatin, for example, acylate the N6-amino groups of lysine side chains. A liquid chromatography (LC)–tandem mass spectrometry (MS) method was developed to quantify the resulting N6-formyl-lysine residues, which were observed to be present in unperturbed cells and all sources of histone proteins to the extent of 0.04–0.1% of all lysines in acid-soluble chromatin proteins including histones. Cells treated with neocarzinostatin showed a clear dose–response relationship for the formation of N6-formyl-lysine, with this nucleosome linker-selective DNA-cleaving agent causing selective N6-formylation of the linker histone H1. The N6-formyl-lysine residue appears to represent an endogenous histone secondary modification, one that bears chemical similarity to lysine N6-acetylation recognized as an important determinant of gene expression in mammalian cells. The N6-formyl modification of lysine may interfere with the signaling functions of lysine acetylation and methylation and thus contribute to the pathophysiology of oxidative and nitrosative stress.


Free Radical Research | 2012

Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids.

Jean Cadet; Steffen Loft; Ryszard Olinski; Mark D. Evans; Karol Bialkowski; J. Richard Wagner; Peter C. Dedon; Peter Møller; Marc M. Greenberg; Marcus S. Cooke

Abstract A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua), a ubiquitous marker of almost every type of oxidative stress in cells. Efforts to standardize the nomenclature and abbreviations of the main DNA degradation products that arise from oxidative pathways are reported. Information is also provided on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included.


PLOS Pathogens | 2012

2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase.

Hongping Dong; David C. Chang; Maggie Ho Chia Hua; Siew Pheng Lim; Yok Hian Chionh; Fabian Hia; Yie Hou Lee; Petra Kukkaro; Shee-Mei Lok; Peter C. Dedon; Pei Yong Shi

RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro.


Cancer Research | 2008

AlkB Homologue 2–Mediated Repair of Ethenoadenine Lesions in Mammalian DNA

Jeanette Ringvoll; Marivi N. Moen; Line M. Nordstrand; Lisiane B. Meira; Bo Pang; Anders Bekkelund; Peter C. Dedon; Svein Bjelland; Leona D. Samson; Pål Ø. Falnes; Arne Klungland

Endogenous formation of the mutagenic DNA adduct 1,N(6)-ethenoadenine (epsilon A) originates from lipid peroxidation. Elevated levels of epsilon A in cancer-prone tissues suggest a role for this adduct in the development of some cancers. The base excision repair pathway has been considered the principal repair system for epsilon A lesions until recently, when it was shown that the Escherichia coli AlkB dioxygenase could directly reverse the damage. We report here kinetic analysis of the recombinant human AlkB homologue 2 (hABH2), which is able to repair epsilon A lesions in DNA. Furthermore, cation exchange chromatography of nuclear extracts from wild-type and mABH2(-/-) mice indicates that mABH2 is the principal dioxygenase for epsilon A repair in vivo. This is further substantiated by experiments showing that hABH2, but not hABH3, is able to complement the E. coli alkB mutant with respect to its defective repair of etheno adducts. We conclude that ABH2 is active in the direct reversal of epsilon A lesions, and that ABH2, together with the alkyl-N-adenine-DNA glycosylase, which is the most effective enzyme for the repair of epsilon A, comprise the cellular defense against epsilon A lesions.


Nature Protocols | 2014

Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry

Dan Su; Clement T. Y. Chan; Chen Gu; Kok Seong Lim; Yok Hian Chionh; Megan E. McBee; Brandon S. Russell; I. Ramesh Babu; Thomas J. Begley; Peter C. Dedon

Post-transcriptional modification of RNA is an important determinant of RNA quality control, translational efficiency, RNA-protein interactions and stress response. This is illustrated by the observation of toxicant-specific changes in the spectrum of tRNA modifications in a stress-response mechanism involving selective translation of codon-biased mRNA for crucial proteins. To facilitate systems-level studies of RNA modifications, we developed a liquid chromatography–mass spectrometry (LC-MS) technique for the quantitative analysis of modified ribonucleosides in tRNA. The protocol includes tRNA purification by HPLC, enzymatic hydrolysis, reversed-phase HPLC resolution of the ribonucleosides, and identification and quantification of individual ribonucleosides by LC-MS via dynamic multiple reaction monitoring (DMRM). In this approach, the relative proportions of modified ribonucleosides are quantified in several micrograms of tRNA in a 15-min LC-MS run. This protocol can be modified to analyze other types of RNA by modifying the steps for RNA purification as appropriate. By comparison, traditional methods for detecting modified ribonucleosides are labor- and time-intensive, they require larger RNA quantities, they are modification-specific or require radioactive labeling.


RNA Biology | 2012

Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications

Ashish Patil; Clement T. Y. Chan; Madhu Dyavaiah; John P. Rooney; Peter C. Dedon; Thomas J. Begley

Correct codon-anticodon pairing promotes translational fidelity, with these interactions greatly facilitated by modified nucleosides found in tRNA. We hypothesized that wobble uridine modifications catalyzed by tRNA methyltransferase 9 (Trm9) are essential for translational fidelity. In support, we have used phenotypic, reporter and protein-based assays to demonstrate increased translational infidelity in trm9Δ Saccharomyces cerevisiae cells. Codon reengineering studies suggest that Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific genes, those rich in arginine and glutamic acid codons from mixed boxes. Using quantitative tRNA modification analysis, we determined that trm9Δ cells are only deficient in 2 of 23 tRNA modifications, with those 2, 5-methoxycarbonylmethyluridine (mcm5U) and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), classified as key determinants of translational fidelity. We also show that in the absence of mcm5U and mcm5s2U, the resulting translational infidelity promotes protein errors and activation of unfolded protein and heat shock responses. These data support a model in which Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific transcripts, with decreased wobble base modification leading to translational infidelity, protein errors and activation of protein stress response pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Chemical and cytokine features of innate immunity characterize serum and tissue profiles in inflammatory bowel disease

Charles G. Knutson; Aswin Mangerich; Yu Zeng; Arkadiusz R. Raczynski; Rosa G. Liberman; Pilsoo Kang; Wenjie Ye; Erin G. Prestwich; Kun Lu; John S. Wishnok; Joshua R. Korzenik; Gerald N. Wogan; James G. Fox; Peter C. Dedon; Steven R. Tannenbaum

Significance Our study investigates chemical damage associated with chronic inflammation and relates these macromolecular damage products to inflammatory bowel disease activity. Using mice as a model system, we show that chronic inflammatory responses that are common to mice and humans produce similar types and quantities of damage products in both species. Additional analysis of signaling molecules in the serum and tissue of diseased samples highlights the role of the innate immune response in the overall pathology of inflammatory bowel disease. Inflammatory bowel disease (IBD) arises from inappropriate activation of the mucosal immune system resulting in a state of chronic inflammation with causal links to colon cancer. Helicobacter hepaticus-infected Rag2−/− mice emulate many aspects of human IBD, and our recent work using this experimental model highlights the importance of neutrophils in the pathology of colitis. To define molecular mechanisms linking colitis to the identity of disease biomarkers, we performed a translational comparison of protein expression and protein damage products in tissues of mice and human IBD patients. Analysis in inflamed mouse colons identified the neutrophil- and macrophage-derived damage products 3-chlorotyrosine (Cl-Tyr) and 3-nitrotyrosine, both of which increased with disease duration. Analysis also revealed higher Cl-Tyr levels in colon relative to serum in patients with ulcerative colitis and Crohn disease. The DNA chlorination damage product, 5-chloro-2′-deoxycytidine, was quantified in diseased human colon samples and found to be present at levels similar to those in inflamed mouse colons. Multivariate analysis of these markers, together with serum proteins and cytokines, revealed a general signature of activated innate immunity in human IBD. Signatures in ulcerative colitis sera were strongly suggestive of neutrophil activity, and those in Crohn disease and mouse sera were suggestive of both macrophage and neutrophil activity. These data point to innate immunity as a major determinant of serum and tissue profiles and provide insight into IBD disease processes.


Chemical Research in Toxicology | 2014

A system of RNA modifications and biased codon use controls cellular stress response at the level of translation.

Peter C. Dedon; Thomas J. Begley

Cells respond to environmental stressors and xenobiotic exposures using regulatory networks to control gene expression, and there is an emerging appreciation for the role of numerous postsynthetic chemical modifications of DNA, RNA, and proteins in controlling transcription and translation of the stress response. In this Perspective, we present a model for a new network that regulates the cellular response to xenobiotic exposures and other stresses in which stress-induced reprogramming of a system of dozens of post-transcriptional modifications on tRNA (tRNA) promotes selective translation of codon-biased mRNAs for critical response proteins. As a product of novel genomic and bioanalytical technologies, this model has strong parallels with the regulatory networks of DNA methylation in epigenetics and the variety of protein secondary modifications comprising signaling pathways and the histone code. When present at the tRNA wobble position, the modified ribonucleosides enhance the translation of mRNAs in which the cognate codons of the tRNAs are highly over-represented and that represent critical stress response proteins. A parallel system may also downregulate the translation of families of proteins. Notably, dysregulation of the tRNA methyltransferase enzymes in humans has also been implicated in cancer etiology, with demonstrated oncogenic and tumor-suppressive effects.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA

Bo Pang; Jose Luis McFaline; Nicholas E. Burgis; Min Dong; Koli Taghizadeh; Matthew R. Sullivan; C. Eric Elmquist; Richard P. Cunningham; Peter C. Dedon

Deamination of nucleobases in DNA and RNA results in the formation of xanthine (X), hypoxanthine (I), oxanine, and uracil, all of which are miscoding and mutagenic in DNA and can interfere with RNA editing and function. Among many forms of nucleic acid damage, deamination arises from several unrelated mechanisms, including hydrolysis, nitrosative chemistry, and deaminase enzymes. Here we present a fourth mechanism contributing to the burden of nucleobase deamination: incorporation of hypoxanthine and xanthine into DNA and RNA caused by defects in purine nucleotide metabolism. Using Escherichia coli and Saccharomyces cerevisiae with defined mutations in purine metabolism in conjunction with analytical methods for quantifying deaminated nucleobases in DNA and RNA, we observed large increases (up to 600-fold) in hypoxanthine in both DNA and RNA in cells unable to convert IMP to XMP or AMP (IMP dehydrogenase, guaB; adenylosuccinate synthetase, purA, and ADE12), and unable to remove dITP/ITP and dXTP/XTP from the nucleotide pool (dITP/XTP pyrophosphohydrolase, rdgB and HAM1). Conversely, modest changes in xanthine levels were observed in RNA (but not DNA) from E. coli lacking purA and rdgB and the enzyme converting XMP to GMP (GMP synthetase, guaA). These observations suggest that disturbances in purine metabolism caused by known genetic polymorphisms could increase the burden of mutagenic deaminated nucleobases in DNA and interfere with gene expression and RNA function, a situation possibly exacerbated by the nitrosative stress of concurrent inflammation. The results also suggest a mechanistic basis for the pathophysiology of human inborn errors of purine nucleotide metabolism.

Collaboration


Dive into the Peter C. Dedon's collaboration.

Top Co-Authors

Avatar

Koli Taghizadeh

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Begley

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Steven R. Tannenbaum

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

I. Ramesh Babu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael S. DeMott

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bo Pang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gerald N. Wogan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin G. Prestwich

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kok Seong Lim

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge